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2 Instituto de Matemática Pura e Aplicada, Rio de Janeiro, RJ 22460-320, Brazil.

E-mail: grigori@ice.ufjf.br

Abstract. We study a model for the injection of air into an underground porous medium that
contains a solid fuel. In our previous works the model was simplified and all wave sequences
for the Riemann problem solution were obtained without taking into account thermal losses to
the surrounding rock. In this work the first step is made to understand the effect of heat losses,
which are important especially in laboratory experiments. In order to simplify the proof of the
existence and uniqueness of the traveling wave solution, we disregard diffusion effects and the
dependence of gas density on temperature.

1. Introduction

Air injection with in-situ combustion offers several potential technical and economic advantages
that may include faster oil production, reduced operational costs and increased CO2 content with
decreased oil viscosity. Despite other difficulties related to engineering and chemical modeling,
solving the equations for such models is a challenge.

This paper is part of long term research project the purpose of which is to identify waves
that arise in one-dimensional models of combustion in porous media, and to understand how
the waves fit together in solutions of Riemann problems; see [1, 2, 3, 4, 5, 6], and references
therein. The paper is motivated by a model for the injection of air into a porous medium that
contains oil so viscous that it can be considered a solid fuel. The model was proposed in [7] and
further studied in [1]. This model was simplified in [8] in order to (i) reproduce the variety of
phenomena observed when air is injected into a porous medium containing a solid fuel, yet (ii)
to be simple enough to permit a rigorous investigation.

In this paper we prove the existence of a traveling wave solution corresponding to the
combustion wave for a simple in-situ combustion model. This model is more general then the
previously considered one [8] in three aspects. First it considers more physically realistic thermal
capacity of the medium, leading to distinct thermal and gas velocities. Second, we utilize a more
correct form of Arrhenius law, allowing chemical reaction to happen at any temperatures, see also
[9]. Third, we take into account the effect of thermal losses, which is important for laboratory
experiments. We solve possible Riemann problems and classify the resulting solutions depending
on the presence of slow, fast or resonance combustion waves. We emphasize that the existence
and uniqueness proofs for the results presented in this paper are technically simple and should
be accessible to students. For other approaches addressing combustion with heat losses see [10].
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A model for combustion is presented in Section 2. It consists of three balance laws for
energy, oxygen, and fuel. We use a reaction rate described by Arrhenius law combined with Law
of Mass Action. The combustion waves studied in this paper have been called “reaction-trailing
smolder waves” [11] and “coflow (or forward) filtration combustion waves” [12] in the context
of more realistic models of air injection into a porous medium. We formulate the main results
of the paper in Section 3. Due to lack of space we present only schematically the proofs of the
existence and uniqueness of the combustion traveling waves in Section 4. The complete proof
will be published soon in a companion paper with some numerical examples showing the phase
portrait of the traveling wave.

2. Combustion model

We consider one-dimensional flow due to air injection into a porous medium. We use notation and
assumptions from [1]. We neglect changes of porosity during the reaction and gas expansibility
under temperature increase. We assume that the temperature of solid and gas is the same (local
thermal equilibrium). This work is concerned with heat losses, which we consider to depend
linearly on the temperature difference with the prevailing temperature, see e.g., [7]. We also
assume that pressure variations are small compared to the prevailing pressure. In order to prove
the existence of traveling waves minimizing technical difficulties we neglect thermal diffusion
effects. In dimensionless form the governing system of equations is written as follows [8]:

∂θ

∂t
+ vθ

∂θ

∂x
= −βθ + ρY Φ, (1)

∂Y

∂t
+ vY

∂Y

∂x
= −µY ρY Φ, (2)

∂ρ

∂t
= −ρYΦ, (3)

Φ = exp

(

−E

θ + θ0

)

, (4)

where the dependent variables are temperature θ, oxygen fraction Y and fuel ρ. Here vθ and vY
are dimensionless thermal and oxygen wave speeds; β is the constant thermal loss coefficient;
λ̄ represents the dimensionless thermal diffusion coefficient; µY represents the dimensionless
quantity of oxygen consumed during the reaction; E is the scaled activation energy and θ0 is
the scaled reservoir temperature. The oxygen Y is a component of the gas moving with velocity
vY > 0. The heat θ is transported with velocity vθ. We are of course interested in solutions with
ρ ≥ 0 and Y ≥ 0 everywhere. We consider (1)–(3) on 0 < x < ∞, t ≥ 0, with the (constant)
boundary conditions

(θ, ρ, Y )(0) = (θL, ρL, Y L), (θ, ρ, Y )(∞) = (θR, ρR, Y R). (5)

We assume that the reaction does not occur at the boundaries, i.e., the reaction terms in (1)–(3)
vanish. Differently from [6, 8], here we consider the correct Arrhenius law (4) and thus there
are only two reasons for the reaction terms to vanish: (i) fuel control (FC) – the reaction ceases
due to lack of fuel, ρ = 0; (ii) oxygen control (OC) – the reaction ceases due to lack of oxygen,
Y = 0. In the next section we study the solution of the Riemann problem for system (1)–(4).

3. Wave sequences

In this section we follow [6, 8] and denote by (θ−, ρ−, Y −)
v
−→ (θ+, ρ+, Y +) a wave of velocity

v that connects (θ−, ρ−, Y −) at the left to (θ+, ρ+, Y +) at the right. At the end states of the
wave, the reaction terms in (1)–(3) vanish. States at which the reaction terms vanish can be
classified as FC or OC. The type of the state indicates exactly which conditions hold at that
state. For simplicity we consider that ρ = 1 in OC state and Y = 1 in FC state.
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3.1. Contact waves
In the non-combustion waves supported by system (1)–(3) the source terms vanish. The
characteristic eigenvalues and corresponding eigenfunctions of the resulting hyperbolic system
are (see [8] for details) λθ = vθ and (1, 0, 0)T , λY = vY and (0, 1, 0)T , λf = 0 and (0, 0, 1)T . We
can see that the Riemann problem possesses three non-combustion waves. As the characteristic
speeds are constant the waves correspond to contact discontinuities. The latter separate moving
spatial intervals in which the reaction does not occur (since (θ, ρ, Y ) is constant).

3.2. Combustion waves
As in [8], system (1)–(4) possesses a traveling combustion wave. We formulate the main result
below and give a sketch of the proof in Section 4.

Theorem 3.1. The system (1)–(3) possesses a unique combustion wave in the following cases

(i) If vY < (µY + 1)vθ then a unique slow combustion wave with speed v < vθ exists.

(ii) If vY > (µY + 1)vθ then a unique fast combustion wave with speed v > vθ exists.

(iii) If vY = (µY +1)vθ then there exists a unique combustion wave if and only if: either E < 4θ0
or there are exactly three values of θ > 0 satisfying Eq. 4βθ exp(E/(θ + θ0)) = 1.

In all cases the combustion wave is of type FC
v
−→ OC, where its speed is given by v in Eq. (7).

3.3. Solutions of the Riemann problem
For the existence of a wave sequence describing Riemann solution obviously it is has to start as
one equilibrium state (FC or OC) and finish at another equilibrium state (FC or OC). The
waves speeds in the sequence appear in increasing order from left to right. This fact together with
the results concerning contact and combustion waves described above lead to three possibilities
for wave sequences corresponding respectively to three cases described in Theorem 3.1.

(i) If the sequence contains a slow combustion wave FC
v
−→ OC

vθ
−→ OC.

(ii) If the sequence contains a fast combustion wave FC
vθ
−→ FC

v
−→ OC.

(iii) If the sequence is composed of a single resonance combustion wave FC
v
−→ OC.

In Fig. 1 we plot the wave sequences separated by constant states for the cases (i) (left figure),
(ii) (center figure) and (iii) right figure.
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Figure 1. Wave sequences in Riemann solution separated by constant states: (i) (left figure),
(ii) (center figure) and (iii) right figure. θb is the temperature of the combustion wave.
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4. Existence and uniqueness of the combustion traveling waves

We rewrite the system (1)–(4) in traveling coordinates (x, t) → (ξ = x−vt, t), where v is positive
velocity of the traveling wave. We integrate the resulting system of ODEs once and substitute
the boundary conditions (5), obtaining

dξρ = ρ(1− ρ)
Φ

v
, dξθ =

ρ(1− ρ)Φ− βθ

vθ − v
. (6)

After some manipulations, similar to those done in [8], we obtain the combustion wave speed v
and the oxygen concentration as function of fuel concentration

v = vY /(µY + 1), Y = 1− ρ. (7)

Following [8], waves with velocities v > vθ and v < vθ are called fast and slow combustion
waves respectively. The case when vθ = v is known as resonance condition for the combustion
wave, see [2, 12, 13] and references therein.

The proof of Theorem 3.1 is extensive and can not be presented here due to limitation in
space, it will be published later in a companion paper. The existence and uniqueness of the
traveling wave solution for the system (1)–(4) is equivalent to the existence and uniqueness of
an heteroclinic orbit of system (6) connecting two equilibria, which are hyperbolic. The local
analysis based on the Stable Manifold Theorem is performed to understand the behavior of stable
and unstable manifolds in the vicinity of these equilibria and verify the necessary conditions for
the existence of such an heteroclinic orbit. The rest of the proof is based on the geometrical
analysis of the flux defined by Eqs. (6).

In the model (1)–(3) without thermal losses the traveling wave equations under the resonance
condition v = vθ yields in a degenerate traveling wave without combustion. The same situation
happens for the model studied in [8]. Taking into account thermal losses allows the appearance
of a different type of solution, which is interesting from the physical point of view.
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