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Abstract. We give large deviation estimates for a non-markovian convolution semi-group
with a non-local generator of Lévy type of big order and with the standard normalisation of
semi-classical analysis. No stochastic process is associated to this semi-group.

1. Introduction
There are much more semi-groups than semi-groups which are represented by stochastic
processes. On the other hand, there are a lot of formulas in stochastic analysis which are natural.
The theory of pseudodifferential operators [1–3] allow to understand a lot of partial differential
equations, including parabolic equations. On the other hand we have imported in the theory
of non-markovian semi-groups a lot of tools of stochastic analysis [4–17]. Stochastic analysis
formulas are valid for the whole process. Their interpretation for non-markovian semi-groups
work only for the semi-group.

In [16] and [17], we have done with the classical normalization of semi-classical analysis [18]
Wentzel-Freidlin estimates [19] for four order differential operators. Here we extend the method
of [16] to the case of an integro-differential operator of big order which generates a non-markovian
convolution semi-group. Normalisation are of Maslov type [18].

2. Statement of the theorems
Let C∞b (R) the set of smooth functions on R with bounded derivatives at each order endowed
with its natural topology. Cb(R) is the space of bounded contiunous functions endowed with
the uniform norm. L2 is the space of square integrable norms for the Lebesgue measure. This
is an Hilbert space endowed with its natural scalar product <,>.

Let h be a smooth positive function on R with compact support such that h(y) = h(−y) and
such that h(y) = 1 is equal to 1 on [−β, β].

Let be α ∈ [0, 1]. We introduce the Levy generator acting on C∞b (R):

Lf(x) = (−1)d+1

∫
R

(f(x+ y)− f(x)−
d∑
i=1

y2i

2i!
f (2i)(x))

h(y)

|y|2d+α
dy (1)

h(y)
|y|2d+αdy is called the Lévy measure.
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Theorem 1:: L is symmetric positive on L2. It has therefore a natural essentially-self
adjoint extension which generates a semi-group of contraction Pt on L2.

We consider the Hamiltonian

H(ξ) =

∫
R

(exp[ξy]− 1−
d∑
i=1

(ξy)2i

2i!
)
h(y)

|y|2d+α
dy (2)

Theorem 2: H(ξ) i is a smooth convex function equals to 1 in 0.
Associate to it, we consider its Legendre transform:

L(p) = sup
ξ∈R

(ξp−H(ξ)) (3)

If φ is a finite energy function in R, we consider the action functional

S(φ) =

∫ 1

0
L(
dφ

dt
)dt (4)

Let us recall some basis of the pseudodifferential calculus. f̂ is the Fourier transform of f . Let
L1 be an operator acting on C∞b (Rd) by

L1f(x) =

∫
R
a(x, ξ)f̂(ξ) exp[2

√
−1πξx]dξ (5)

We say that a(., .) is its symbol. If

| ∂
n

∂xn
∂m

∂ξm
a(x, ξ)| ≤ C|ξ|r−m (6)

and if for |ξ| > C0

|a(x, ξ)| ≥ C|ξ|r (7)

we say that L1 is an elliptic operator of order r. Let us recall that our thesis underline the
relationship between pseudodifferential operators and Poisson processes [20].

Theorem 3:L is an elliptic pseudodifferential operator.
By elliptic theory, it generates a semi-group on Cb(R).
According the theory of semi-classical analysis [19], we consider the symbol Lε1 associated to

the symbol ε−1a(x, εξ). This leads to the operator

Lεf(x) = (−1)d+1 1

ε

∫
R

(f(x+ εy)− f(x)−
d∑
i=1

(εy)2i

2i!
f (2i)(x))

h(y)

|y|2d+α
dy (8)

By elliptic theory Lε generates a semi-group on L2 and even on Cb(R) P εt . We consider its
absolute value |P εt |. We have

Theorem 4 (Wentzel-Freidlin estimates): Let O be the complement in R of the interval
[x− δ, x+ δ]. We have when ε→ 0

LimεLog|P ε1 |[1O](x) ≤ − inf
φ(1)∈O

S(φ) (9)

if d+ 1 is even.
The proof is very similar to the proof of [16], the only difference being in the algebraic

treatment of Davies method [21].
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3. Proofs of Theorem 1, Theorem 2 and Theorem 3
Proof of theorem 1: Let us show that L is symmetric. Let f anf g be smooth with compact
supports:

(−1)d+1 < Lf, g > =

∫
R2

g(x)((f(x+ y)− f(x)−
d∑
i=1

y2i

2i!
f (2i)(x))

h(y)

|y|2d+α
)dxdy (10)

The symmetry holds by integrating by parts and since h(−y) = h(y).
Let us show that L is positive. We have if y > 0

f(x+ y)− f(x) =

2d−1∑
i=1

yi

i!
f (i)(x) +

∫
0<s1<..<s2d<y

f (2d)(x+ s1)ds1..ds2d (11)

Due to the parity of h, we have only to look at∫
R×R+

f(x)

∫
0<s1<..<s2d<y

f (2d)(x+ s1)ds1..ds2d
h(y)

|y|2d+α
dxdy (12)

By integrating by parts, it is equal to:

(−1)d
∫
R×R+

f (d)(x)

∫
0<s1<..<s2d<y

f (d)(x+ s1)ds1..ds2d
h(y)

|y|2d+α
dxdy (13)

By Cauchy -Schwartz inequality,∫
R
f (d)(x)f (d)(x+ s1)dx ≤

∫
R

(f (d)(x))2dx (14)

Therefore

(−1)d+1

∫
R×R+

f(x) ∫
0<s1<..<s2d<y

(f (2d)(x+ s1)− f (2d)(x))ds1..ds2d
h(y)

|y|2d+α
dxdy ≥ 0 (15)

This shows the result. The fact that the operator has a natural self-adjoint extension which is
essentially self-adjoint holds by standard results.♦

Proof of theorem 2: H(ξ) is smooth. We have clearly

H(1)(ξ) =

∫
R
y(exp[ξy]−

d∑
i=1

(ξy)2i−1

(2i− 1)!
)
h(y)

|y|2d+α
dy (16)

H(2)(ξ) =

∫
R
y2(exp[ξy]− 1−

d−1∑
i=1

(ξy)2i

2i!
)
h(y)

|y|2d+α
dy (17)

Due to the fact that h(y) = h(−y), the result holds from the fact by induction on l that

exp[yξ] + exp[−ξy]−
l∑

i=0

ξ2iy2i

2i!
(18)
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is positive convex in ξ.♦
Proof of theorem 3: Let us compute the symbol of L.

f(x) = C

∫
R
f̂(ξ) exp[

√
−1xξ]dξ (19)

Therefore

Lf(x) +

∫
R

h(y)

|y|2d+α
dy

∫
R

(exp[
√
−1(x+ y)ξ]−

2d∑
i=0

(
√
−1yξ)2i

2i!
exp[
√
−1xξ])f̂(ξ)dξ =

∫
R
f̂(ξ) exp[

√
−1xξ]dξ

∫
R

(exp[
√
−1ξy]− 1−

d∑
i=1

(
√
−1ξy)2i

2i!
)
h(y)

|y|2d+α
dy (20)

Therefore the symbol is given by
a(ξ) = H(

√
−1ξ) (21)

By puting yξ = z if ξ > 0 we get that

a(ξ) = ξ(2d−1+α)
∫
R
h(
z

ξ
)(cos[z]−

2d∑
i=0

(−1)iz2i

(2i)!
)dz (22)

In (22), we consider a smooth h1 function which is equal to zero near 0 and which is equal to 1
in a neighborhood of the infinity and which takes its values in [0, 1] and we write

a(ξ) = a1(ξ) + a2(ξ) (23)

a1(ξ) = ξ(2d−1+α)
∫
R
h1(

z

ξ
)h(

z

ξ
)(cos[z]−

2d∑
i=0

(−1)iz2i

(2i)!
)dz (24)

By integrating by parts succesively, |a1(ξ)| ≤ Cξ−n for all n. On the other if the support of
1− h1 is small enough, we have

|a2(ξ)| ≥ Cξ(2d−1+α) (25)

for some positive C. The result arise by symmetry for ξ < 0. ♦

4. Proof of the Wentzel-Freidlin estimates
Let us begin by some elementary remarks. We remark that

L̂f = H(
√
−1.)f̂ (26)

such that
P̂tf = exp[−tH(

√
−1.)]f̂ (27)

These elementary remarks (which are true a lot of convolution semi-groups) will allow us to
adapt the proof of [16].

Lemma 5: For all δ > 0, all C there exist tδ such that if t < tδ

|P εt |(|1[x−δ,x+δ]c)(x) ≤ exp[−C
ε

] (28)

Proof: We consider the semi-group

exp[−xξ
ε

]P εt [exp[
x′ξ

ε
]f(x′)](x) (29)
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The symbol of its generator is

F εξ (ξ′) =
1

ε
H(ε
√
−1ξ′ + ξ) (30)

This is the symbol of an elliptic operator which is positive if |ξ′| is big. It generates therefore a

semi-group on Cb(R) Qε,ξt . We get the expansion

F εξ (ξ′) =
H(ξ)

ε
+H(1)(ξ)

√
−1ξ′ + ε

∫
0<s1<s2<1

(ξ′)2H(2)(εs1
√
−1ξ′ + ξ)ds1ds2+

H(ξ)

ε
+H(1)

√
−1ξ′ +Rεξ(ξ

′) (31)

Therefore We get

ˆ
Qε,ξt f = exp[− tH(ξ)

ε
] exp[−t(+H(1)

√
−1ξ′ +Rεξ(ξ

′))]f̂ (32)

The uniform norm of exp[−t(+H(1)
√
−1ξ′ + Rεξ(ξ

′)) is bounded and the uniform norm of its

derivative is bounded by exp[C|ξ|]/ε. Therefore the norm on Cb(R) of Qε,ξt is bounded by

exp[−CtH(ξ)
ε ] exp[C|ξ|]. Therefore

|P εt |(|1[x−δ,x+δ]c)(x) ≤ exp[−CtH(ξ)

ε
] exp[

δξ

ε
] exp[Cξ] (33)

But H(ξ) ≥ C|ξ| if |ξ| > K(C) for all C.♦
Remark: This inequality where the classical Davies gauge transform plays a fundamental

role [21] replace the role of exponential martingales of [19].
When we have proved this lemma, the estimates follow closely the lines of [16] and [19].
We cut the time interval [0, 1] is small intervals of length [ti, ti+1]. By the semi group property

we use that
|P ε1 |[1[x−δ,x+δ]c ](x) ≤ |P εt1 |..|P

ε
1−tn |[1[x−δ,x+δ]c ](x) (34)

In P εti+1−ti , we distinguish if xti−1 and xti are far or not. If they are we use the previous lemma.
If they are close, we deduce a positive measures |Wε| on polygonal paths φt which joins xti to
xti+1 . By the previous lemma, it remains to estimate |Wε|[|1[x−δ,x+δ]c(φ1)]. But |Wε| is a positive
measure, we have

|Wε[|[1[x−δ,x+δ]c ](φ1)] ≤ |Wε|[exp[
S(φ)

ε
]1[x−δ,x+δ]c(φ1)] exp[− inf

φ1∈[x−δ,x+δ]c
S(φ)

ε
] (35)

Therefore we have only to estimate |Wε|[exp[S(φ)ε ]1[x−δ,x+δ]c(φ1)]. The sequel follows [19] p 152
( [16]. We can choose some pi in finite numberrs such that if we put

L′(p) = sup
i

(L(pi) +
∂

∂p
L(pi)(p− pi)) (36)

we have for all polygonal paths considereded for a small χ

L(
dφt
dt

)− L′(dφt
dt

) ≤ χ (37)
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Let us put

S′(φ) =

∫ 1

0
L′(

dφt
dt

)dt (38)

Since |Wε| is a positive measure, we have only to estimate the quantity

|Wε|[exp[
S′(φ)

ε
]1[x−δ,x+δ]c(φ1)] (39)

We remark that
exp[sup ai] ≤

∑
exp[ai] (40)

Moreover
L′(p) = sup(ξip−H(ξi)) (41)

where ξi = ∂
∂pL(pi). Therefore it is enough to show that

sup
x,|ξ|<C

|P εtδ |[exp[
ξ

ε
(x′ − x)− tδH(ξ)]](x) (42)

has a small blowing up when ε→ 0. We do as in the previous lemma. We consider the generator
of the semi group

f → P εt [exp[
ξ

ε
(x′ − x)− tH(ξ)]f ](x) (43)

Its symbol is
1

ε
H(ε
√
−1ξ′ + ξ)− 1

ε
H(ξ) (44)

Its asymptotic expansion in ε is
((H(1)

√
−1ξ′ +Rεξ(ξ

′) (45)

The result follows as in the lemma.♦

5. Conclusion
We have adapted the standard proof of large deviation estimates of jump processes of [19] (with
the standard normalisation of semi-classical analysis [18]) to the case of a non-markov Lévy
generator of big order. The main difference with [16] is that the classical gauge transform of
Davies [21] induces a simple transformation on the symbol of the Lévy generator [20]
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