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Abstract. We present an application of a Lagrangian Stochastic Model (LSM) to turbulent
dispersion over complex terrain, where turbulent coherent structures are known to play a crucial
role. We investigate the case of a vegetated canopy by using semi-empirical parameterizations
of turbulence profiles in the region inside and above a canopy layer. The LSM is based
on a 4-dimensional Fokker-Planck (4DFP) equation, which extends the standard Thomson87
Lagrangian approach. The 4DFP model is derived by means of a Random Field description
of the turbulent velocity field. The main advantage of this approach is that not only the
experimental Eulerian one-point statistics, but also the Eulerian two-point two-time covariance
structure can be included explicitly in the LSM. At variance with the standard Thomson87
approach, the 4DFP model allows to consider explicit parameterizations of the turbulent
coherent structures as it explicitly includes both spatial and temporal correlation functions. In
order to investigate the effect of the turbulent geometrical structure on a scalar concentration
profile, we performed numerical simulations with two different covariance parameterizations, the
first one isotropic and the second anisotropic. We show that the accumulation of scalars near
the ground is due to the anisotropic geometrical properties of the turbulent boundary layer.

1. Introduction
Lagrangian Stochastic Models (LSMs) provide a useful tool to describe turbulent dispersion.
They are based on a (Markovian) Langevin Equation for the Lagrangian particle velocity [3],
whose drift and noise terms are related through the well-mixedness criterion (WMC) stated in
the 1987 milestone paper by Thomson (Th87) [2]. In the Th87 approach the 1-point 1-time
Probability Density Function (PDF) of the Eulerian velocity is experimentally known. The
noise term is described by the 2nd order structure function, whose scaling is linear when the
time increments are limited to the inertial subrange scales: 〈[u(t+ ∆t)−u(t)]2〉 ' C0ε∆t, being
ε the turbulent energy dissipation rate and C0 a constant 1. Applying the WMC, the drift is

1 This is assumed to be a constant in the original 1941 Kolmogorov similarity (K41) theory, but it is nowadays
well-known that this assumption is not exactly true due to intermittency of the velocity field at the inertial scales
and small higher-order corrections, related to the velocity statistics, are considered.
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expressed as a function of ε and of the Eulerian PDF. Apart from the homogeneous isotropic
Gaussian turbulence, the drift is not determined uniquely, but only up to a velocity curl [2, 9, 11].
The standard Th87 approach, based on the WMC, is a powerful technique extensively used
in Lagrangian transport modeling. However, the spatio-temporal geometrical structure of the
velocity field is given by the universal K41 theory, thus inserting a strong modeling constrain that
does not allow to take into account the experimental knowledge about space-time correlations
of the velocity field, but only that about the Eulerian PDF. Then, Th87 shows some limitations
in highly structured velocity fields (e.g., wall turbulence [4]) and, in general, in conditions where
the geometrical features of the velocity field play a crucial role. From the the first paper by
Thomson [2], Th87 approach has since then been applied in attempts to overcome the limitations
related to the geometrical structure and to other aspects such as the non-uniqueness problem
(see, e.g., [10, 8, 7] for recent developments).
A different approach, with respect to the Th87, was proposed in Ref. [1]. These authors
developed a mathematical formulation which explicitly relates a Random Velocity Field (RVF),
describing the Eulerian statistics, to the associated Lagrangian Stochastic Model (LSM),
describing the trajectory dynamics of a passive scalar. In this approach, the application of the
Ito’s lemma [3] to a 3-Dimensional RVF depending on a 4-Dimensional (4D) space-time vector
allows to derive a sort of 4D Fokker-Planck (4DFP) equation for the PDF of the Eulerian velocity.
Given a semi-empirical expression for the Eulerian PDF with experimentally known parameters,
the WMC [2] is directly applied to the 4DFP equation describing the RVF and not at the level
of the LSM. At variance with Th87, the noise term is not defined from the K41 theory. This
freedom is exploited to explicitly include the 2-point 2-time velocity statistics by means of the
2-points 2-time covariance tensor, which describes the space-time RVF correlations. When the
coefficients of the 4DFP equation are known from the Eulerian statistics (1-point Eulerian PDF
and 2-points covariance tensor), the ordinary Fokker-Planck and Langevin equations describing
the LSM are simply derived by applying the dynamical equation of the passive tracers: ẋ = v.
The main advantage of 4DFP is that not only the experimental Eulerian one-point PDF, but also
the space-time RVF correlation structure, can be explicitly included in the LSM, thus allowing
to consider explicit parameterizations of the turbulent coherent structures.
In this work, a particular version of the 4DFP-LSM, introduced in Ref. [1], is derived and applied
to the case of the turbulent transport of passive scalars in vegetated canopies, thus allowing to
get some information about the role of coherent structures. In particular, two different modeling
choices, one with isotropic and the other with anisotropic motion structures, are compared.
The paper is organized as follows. In Section 2 we introduce the the 4DFP-LSM, in Section
3 we discuss the RVF statistics, both the Eulerian PDF and the covariance tensor, in Section
4 we show the numerical simulations and, finally, in Section 5 we draw some conclusions. In
Appendix A the expression for the noise covariance tensor is introduced.

2. The 4DFP Lagrangian model
We recall here the main definitions and equations of the 4DFP Lagrangian model (see Ref. [1]
for details). A RVF is formally defined through the assignment of n-point statistics for every
n. The theoretical treatment of the general case is much involved and, actually, it is not really
interesting for many applications, as n-point statistics is hardly obtained with the currently
available instrumental technology. Then, the Lagrangian properties of the RVF are defined only
in terms of 1-point 1-time Eulerian PDF and of 2-point 2-time covariance tensor, this being
related to the 2nd order space-time structure function.
Now, we can define a zero-mean, incompressible RVF u(x, t), with 2nd order space-time structure
function scaling linearly in the increments |dx| and dt at small space-time separations. We
introduce 4-vector notation: xµ = {x0, xi} ≡ {t,x}, ∂µ ≡ ∂

∂xµ and we stick rigorously to the
Einstein convention of summation over covariant-contro- variant repeated indices. We have the
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following equation for the velocity increment:

dui ≡ dxµ∂µu
i = Aµ

i(u, xµ)dxµ + dwi ; Aµ
i(u, xµ) = 〈∂µui(x, t)|u(x, t)〉 (1)

and 〈dw|u〉 = 0. A possible expression for the noise correlation structure 〈dwidwj |u(x, t)〉 is
given in Appendix A. In the case of Gaussian Eulerian PDF, we have:

ρE(u, xµ) ≡ ρG(u, xµ) = (8π3||R||)−
1
2 exp(−1

2
Siju

iuj) (2)

where Sij = (R−1)ij is the inverse of the Reynolds covariance tensor Rij = 〈u′iu′j〉, being u′i the
components of the fluctuating velocity . In this case, the coefficients in Eq. (1) are given by the
following expressions:

A i
µ = Ā i

µ +
1

ρE
Φ i
µ +

1

ρE
Ψ i
µ ; Ā i

µ dxµ = −1

2
〈dwidwj〉Sjkuk (3)

Φ i
µ =

1

2
(∂µR

ik)Sklu
lρE ; Ψ i

j =
1

4
[−δij(∂lRlk)Skm + (∂lR

li)Sjm]umρE (4)

The Langevin and Fokker-Planck equations associated with 4DFP-LSM are derived by
substituting the dynamical equations of the passive tracer dxµ = {dt,udt}:

dui ≡ u̇idt = (u ·Ai +A i
0 )dt+ dwi (5)

(∂t + u · ∇)ρL + ∂ui [(u ·Ai +A i
0 )ρL] =

1

2
∂ui∂uj (BijρL) (6)

where Bij(xµ,u) = d
d∆0 〈∆wi∆wj〉 =

u2T
τE

[Bij
t (1)+Bij(u)] [see Eqn. (A.1)]. We used the notation

Aiµ = {Ai0,Ai}.

3. RVF statistics in a vegetated canopy
We limit ourselves to consider a 2D version of the 4DFP-LSM and the Gaussian Eulerian PDF,
Eq. (2), as a 2D PDF. We consider only the streamwise and vertical directions x1 ≡ x and
x3 ≡ z and the corresponding velocity components u1 ≡ u and u3 ≡ w. In order to define the
1-point statistics in Eq. (2), the Reynolds covariance tensor and the mean velocity must be
given. Firstly, it results R12 = R22 = R23 = 0. Then, the mean vertical velocity W is zero, as
such as the spanwise component V . The vertical profiles of the 1-point statistics (mean wind
U(x3), Reynolds covariance tensor and Eulerian time) are taken from [5]. Let us indicate the
mean canopy height with h and the friction velocity with u∗. Then, we have:

U(z) =

{
u∗
k log

(
z−d
z0

)
; z ≥ h

U(h) exp
(
a1(1− z

h)
)
; z < h

R11 = 〈uu〉 =

{
(a4u∗)

2 ; z ≥ h
(a4u∗)

2 exp
(
2a5(1− z

h)
)
; z < h

(7)

R33 = 〈ww〉 =

{
(a6u∗)

2 ; z ≥ h
(a6u∗)

2 [0.5 (a7 + a6) + 0.5 (a7 − a6) cos (πz/h)]2 ; z < h
(8)

R13 = 〈uw〉 =

{
u2
∗; z ≥ h
u2
∗max (a3 − a2z/h; a3 − 0.45a2); z < h

(9)

τE = max (a8h/u∗; k (z − d)u∗/R33) (10)

where k = 0.4 is the Von Karman constant, d the displacement height and z0 the aerodynamic
roughness. These formulations are partially derived from Boundary Layer similarity theory
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and from turbulence measurements. More specifically, the parameters used in Ref. [5] for the
turbulent transport of CO2 are the following:

a1 = −3; a2 = 1.79; a3 = 0.79; a4 = 2.0; a5 = −2; a6 = 1.2; a7 = 0.07; a8 = 0.3 . (11)

Furthermore, following [5], we set d
h = 2

3 and z0 = 0.1.
Regarding the 2-point covariance tensor, we restrict ourselves to coherent structures with axial
simmetry around the vertical axis. As shown in Appendix A, only three coefficients need to be
estimated. In order to do this we should know the behavior of at least three components of the
tensor βijl defined in Eq. (A.10). Alternatively, we need to know only two components as we can
estimate the isotropic coefficient a in Eqs. (A.11) as a rate between the eddy life-time (given
approximately by τE) and the eddy rotation time. This last one is estimated by means of the
rate between a sort of isotropic scale Liso and uT (see Appendix A). Then, we have:

a = C
uT τE
Liso

;
Liso

h
= max (h− d; k(z − d)) (12)

where C is a free adimensional model parameter, which is set C = 1 in our simulations. Then,
b33 and c33 are given by Eq. (A.12). The normalized structure function can be evaluated in the
following way:

βijl =
τER

ij

uTL
ij
l

(13)

where Lijl is the correlation lenght of the velocity components ui and uj along the direction xl.
In Finnigan [6] it is possible to find some experimental results about the behavior of L11

1 and
L33

1 . According to these data, we can propose the following interpolation formulas:

L11
1

h
=



f1

(
z
h

)3
+ f2

(
z
h

)2
+ f3 ; z ≤ z1

f4

(
z
h

)2
+ f5

(
z
h

)
+ f6 ; z1 ≤ z ≤ z2

k
(
z−d
h

)
; z > z2

;
L33

1

h
=



f7

(
z−z3
h

)2
+ f8 ; z ≤ z3

f9

(
z−z3
h

)3
+ f10

(
z−z3
h

)2
+ f8 ; z3 ≤ z ≤ z4

k
(
z−d
h

)
z > z4

(14)
where: f1 = −0.3; f2 = 0.9; f3 = 2; f4 = 0.033136; f5 = −0.32817; f6 = 3.7337; f7 =
−0.03; f8 = 0.85; f9 = −0.22083; f10 = 0.7625; z1 = 2.1h; z2 = 10.987h; z3 = 4h; z4 = 6h.
Note that far from the canopy the correlation lengths are required to satisfy a isotropy condition.
For this reason they are equal to each other and equal to Liso (see Appendix A).

4. Numerical simulations
Simulations have been performed for CO2 dispersion in a Neutral Boundary Layer. The source
is placed at the bottom (z = 0), while the top boundary condition at z/h = 20 is an absorbing
one. Two different versions of 4DFP model have been considered. The first one is a isotropic
version, with the coefficients b33 and c33 set to zero, while the second one is the version with axy-
symmetric coherent structures described in the previous section. In this way, in the isotropic
version the role of anisotropy (related to coherent structures) is neglected. The comparison
between the isotropic and anisotropic versions of the model are reported in Fig. 4. It is evident
that the inclusion of coherent structures in the anisotropic version substantially modify the
concentration profiles and, in particular, it determines an accumulation of tracers at a given
height. It follows that the role of coherent structures cannot be neglected in 4DFP model and,
in particular, the accumulation is related to the presence of anisotropic motion structures. This
result is in qualitative agreement with experimental and modeling studies on the subject [8].
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Figure 1. Numerical results for the CO2 vertical profile. The isotropic (dotted line) and
anisotropic (continuous line) models are compared.

5. Conclusions
We have shown that 4DFP-LSM can esplicitly include the geometrical properties of the turbulent
structures. Numerical simulations have been performed in the case of vegetated canopies,
comparing a isotropic version of the model with a version including coherent structures with
rotational simmetry around vertical axis. Far from being a complete treatment of turbulent
transport in vegetated canopies, the results suggest that the role of geometrical structure
should be explicitly included. Even if limited to time scales comparable to or larger than the
Eulerian/Lagrangian time scales, 4DFP model can explicitly include experimental information
about space-time correlation structure of the velocity field. This is a crucial aspect in many
situations such as wall turbulence and the motion of solid particles on time and space scales
where the trajectory crossing effect is important [1]. In particular, the application to turbulent
transport in vegetated canopies prove that accumulation features are associated with anisotropic
motion structures in the fluid flow.

Appendix A. The model for the noise covariance tensor
A general form for the noise tensor, satisfying the incompressibility condition ∂〈∆wi∆wj〉/∂∆i =
0, is a superposition of terms in the form:

〈∆wi∆wj〉 =
2u2

T

τE
[Bij

t (∆0) +Bij(∆− ū∆0))]; ∂iB
ij(∆) = 0. (A.1)

where ∆0 = ∆t and ∆ = ∆x, τE is the time scale of fluctuations, given by the Eulerian
correlation time in the Gaussian case, u2

T = 1
3R

i
i, and Bij

t = |∆0|δij + B̂ij
t , with B̂ij

t symmetric
and traceless2.
In moderately anisotropic situations, it may be expedient to expand the space component Bij in
spherical tensors, following the SO(3) decomposition technique [12]: Bij(∆) =

∑
J=0B

ij
J (∆),

where Bij
J indicates a combination of J-th order spherical tensors. A symmetric two-index tensor

function can be decomposed in spherical tensors in the form

δijYJ(x), ∂i∂jYJ(x), xixjYJ(x), (xi∂j + xj∂i)YJ(x),

xn(εjnmxi + εinmxj)∂mYJ(x) and xn(εjnm∂i + εinm∂j)∂mYJ(x) (A.2)

2 For lighter notation we leave in this section the dependence from the space-time position unindicated.
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where YJ(x) is a J-order polynomial in the components xi:

YJ(x) = yi1i2...iJxi1xi2 ...xiJ (A.3)

and yi1i2...iJ is traceless with respect to any pair of indices. In consequence of this, the spherical
tensors in Eq. (A.3) will be polynomials of order L = J , J − 2, J + 2, J , J + 1 and J − 1
respectively. In the case of the noise tensor 〈∆wi∆wj〉, we have the additional symmetry with
respect to spatial inversion, which imposes the condition that L be even. This implies J even
for the first four spherical tensors and J odd for the last two. Limiting the analysis to J ≤ 2,
we notice immediately that the last spherical tensor in Eq. (A.2) disappears. Similarly the
J = 1 contribution from xn(εjnmxi+εinmxj)∂mYJ(x) is absent due to incompressibility. Writing
Y1(x) = ymx

m it results:

∂ixn(εjnmxi + εinmxj)∂mY1(x) = 5εjnmxnym = 0 ,

which imposes ym = 0. We are thus left only with the J = 0 and J = 2 contributions.
From the SO(3) decomposition introduced above, the J = 0 and J = 2 contributions to Bij will
have the form:

uTB
ij
0 (x) = a|x|δij + â

xixj

|x|
(A.4)

utB
ij
2 (x) =

4blm

|x|
xlxmδ

ij + 2clm|x|∂i∂jxlxm +
dlm

|x|3
xlxmx

ixj

+
elm

2|x|
(xj∂i + xi∂j)xlxm (A.5)

Applying the incompressibility condition ∂iB
ij = 0 leads to the equations:

â = −a
3

8blm + 4clm + 8elm = 0

3dlm − 4blm − elm = 0

(A.6)

Substituting the solution to Eq. (A.6) into Eqs. (A.4-A.5) leads to:

Bij(∆) =
|∆|
uT

[(a+ 4blm∆̂l∆̂m)δij +
1

3
(−a+ (2blm − clm)∆̂l∆̂m)∆̂i∆̂j

−∆̂l[(2b
li + cli)∆̂j + (2blj + clj)∆̂i] + 4cij ] (A.7)

where a gives the J = 0 part, while the tensors bij and cij , which are symmetric and traceless,
account for the the J = 2 part.
We consider next some relevant limit cases. In the isotropic case, the J = 2 contribution
disappears and we are left with the simple expression:

〈∆wi∆wj〉 =
2u2

T

τE
[|∆0|δij +

a|∆|
uT

(δij − 1

3
∆̂i∆̂j)] (A.8)

The parameter a identifies a length-scale lu = uT τE/a for the fluctuations and has therefore the
meaning of a ratio between the eddy life-time τE and the eddy rotation time lu/uT .

In the axisymmetric case, taking the symmetry axis along x3, we have that only spherical
harmonics with azimuthal quantum number m = 0 can contribute, i.e. Y00 and Y20, the last one
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depending only on (∆̂3)2. This means that all coefficients bij and cij with i 6= j are zero and we
have, remembering also the zero trace condition bii = cii = 0:

b11 = b22 = −1

2
b33, c11 = c22 = −1

2
c33. (A.9)

So, in this case, there are only three unknown: a, b33 and c33. Let us denote with ∆l the spatial
increment in the direction xl. Then, we define:

βijl =
uTB

ij(∆l)

|∆l|
(A.10)

as the normalized structure function relative to the velocity ui and uj along the direction xl. If
we know at least three components of the tensor βijl , we can take the corresponding equations
given in (A.7) and derive a solution for the coefficients a, b33 and c33. If only two components
are known, then it is possible to close the linear system by considering that a still represents
the ratio of the eddy lifetime to the eddy rotation time.
For example, let us suppose that only information along x1 is known and consider Eqn. (A.7)
for the velocity components u1 and u3 in the direction x1:{

1
3

(
2a− b33 − 5

2c
33
)

= β11
1 ,

a+ 4b33 − 2c33 = β33
1 ,

(A.11)

Taking the coefficient a as given and solving with respect to b33 and c33, we find immediately
the result: {

b33 = 1
8a−

1
2β

11
1 + 5

24β
33
1

c33 = 3
4a− β

11
1 − 1

12β
33
1

(A.12)
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