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Abstract. We present results on the controlled dynamics of an externally driven four-level
quantum emitter coupled to a plasmonic metamaterial, specifically a periodic two-dimensional
array of metal-coated dielectric nanospheres. For the study of the system’s dynamics, we
combine the density matrix approach for the quantum emitter with ab initio electromagnetic
calculations for the plasmonic nanostructure. We then present results for the time evolution
of the populations of the different levels of the quantum emitter in both the presence and
the absence of the plasmonic nanostructure. The dependence of the population dynamics to
different distances of the quantum emitter from the plasmonic nanostructure is also studied.

1. Introduction
Recently, there is increasing interest in the study of the interaction of quantum emitters (such
as atoms, molecules and semiconductor quantum dots) with plasmonic nanostructures [1]. The
large fields and the strong light confinement associated with the plasmonic resonances enable
strong interaction between the electromagnetic field and the quantum emitters near plasmonic
nanostructures. Also, the quantum emitter can be used for the controlled optical response of
the hybrid quantum - plasmonic system.

A quantum emitter that has attracted particular attention is modeled by a four-level quantum
system with two V-type transitions [2, 3, 4, 5, 6, 7, 8]. In the quantum system one V-
type transition is influenced by the interaction with surface plasmons while the other V-type
transition interacts with free space vacuum [see Fig. 1(a)]. This system has led to several
interesting quantum coherence and interference phenomena, including optical transparency and
slow light [2], transient gain without inversion [3], strongly modified Kerr nonlinearity [4], phase-
dependent absorption and dispersion [5], strongly modified spontaneous emission spectrum [6, 7]
and coherent population trapping [8].

In this work, we present new theoretical results on the controlled dynamics of the four-
level quantum emitter coupled to a plasmonic metamaterial, namely a periodic two-dimensional
array of metal-coated dielectric nanospheres. An external electromagnetic field is applied to the
system and is used for the control of the dynamics of the quantum system. For the study of
the system’s dynamics, we combine the density matrix approach for the quantum emitter with
ab initio electromagnetic calculations for the plasmonic nanostructure. We then present results
for the time evolution of the population (occupation probability) of the different levels of the
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quantum emitter in both the presence and the absence of the plasmonic nanostructure. Also,
in the presence of the plasmonic nanostructure, we consider the influence of different distances
of the quantum emitter from the plasmonic nanostructure to the population dynamics.

2. Theoretical Model
The quantum system of interest is shown in Fig. 1(a). We consider a four-level system with two
closely lying upper states |2⟩ and |3⟩, and two lower states |0⟩ and |1⟩. The quantum system
is located in vacuum at distance D from the surface of the plasmonic nanostructure. We take
states |2⟩ and |3⟩ to characterize two Zeeman sublevels. The dipole moment operator is taken as
µ⃗ = µ

′
(|2⟩⟨0|ε̂− + |3⟩⟨0|ε̂+) + µ(|2⟩⟨1|ε̂− + |3⟩⟨1|ε̂+) + H.c., where ε̂± = (ez ± iex)/

√
2, describe

the right (ε̂+) and left-rotating (ε̂−) unit vectors; and µ, µ
′
are taken to be real.

3

2
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Figure 1. (a) The quantum system under study is a four-level system where two upper states
|2⟩ and |3⟩ decay with spontaneous emission to the two lower states |0⟩ and |1⟩. The system
interacts with an electromagnetic field that couples state |0⟩ with states |2⟩ and |3⟩. (b) A
metal-coated dielectric nanosphere and (c) the two-dimensional array of metal-coated dielectric
nanospheres used in this work.

The quantum system interacts with a linearly polarized continuous wave laser field, with
electric field E⃗(t) = ẑE0 cos(ωt), where E0 is the electric field amplitude and ω the angular
frequency of the electric field. The laser field couples state |0⟩ with states |2⟩ and |3⟩.

Both excited states |2⟩ and |3⟩ decay spontaneously to state |0⟩ with decay rate 2γ
′
and

to state |1⟩ with decay rate 2γ. We assume that the transitions |2⟩, |3⟩ to |1⟩ lie within the
surface-plasmon bands of the plasmonic nanostructure, whereas the transitions |2⟩, |3⟩ to |0⟩
are spectrally far from the surface-plasmon bands and are not influenced by the plasmonic
nanostructure.

The Hamiltonian that describes the interaction of the electromagnetic field with the quantum
system, in the dipole and rotating wave approximations, is given by

H = ~
(
−δ − ω32

2

)
|2⟩⟨2|+ ~

(
−δ +

ω32

2

)
|3⟩⟨3|

− ~Ω
2

(|0⟩⟨2|+ |0⟩⟨3|+H.c.) . (1)

Here, δ = ω − ω̃ is the detuning from resonance with the average transition energies of states
|2⟩ and |3⟩ from state |0⟩, with ω̃ = (ω3 + ω2)/2 − ω0, ω32 = (ω3 − ω2)/2, and Ω is the Rabi
frequency defined as Ω = µ

′
E0/(

√
2~). Also, ~ωn with n = 0− 3, is the energy of state |n⟩.
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Using the Hamiltonian of Eq. (1) we obtain the following equations for the density matrix
elements of the system, assuming a Markovian response:

ρ̇00(t) = 2γ
′
[ρ22(t) + ρ33(t)]− i

Ω

2
[ρ02(t)− ρ20(t)]

− i
Ω

2
[ρ03(t)− ρ30(t)] , (2)

ρ̇22(t) = −2(γ + γ
′
)ρ22(t) + i

Ω

2
[ρ02(t)− ρ20(t)]

− κ [ρ23(t) + ρ32(t)] , (3)

ρ̇33(t) = −2(γ + γ
′
)ρ33(t) + i

Ω

2
[ρ03(t)− ρ30(t)]

− κ [ρ23(t) + ρ32(t)] , (4)

ρ̇20(t) = (iδ + i
ω32

2
− γ − γ

′
)ρ20(t)− i

Ω

2
ρ22(t)

− i
Ω

2
ρ23(t) + i

Ω

2
ρ00(t)− κρ30(t) , (5)

ρ̇30(t) = (iδ − i
ω32

2
− γ − γ

′
)ρ30(t)− i

Ω

2
ρ33(t)

− i
Ω

2
ρ32(t) + i

Ω

2
ρ00(t)− κρ20(t) , (6)

ρ̇23(t) = (iω32 − 2γ − 2γ
′
)ρ23(t) + i

Ω

2
ρ03(t)− i

Ω

2
ρ20(t)

− κ [ρ22(t) + ρ33(t)] , (7)

with ρ00(t)+ρ11(t)+ρ22(t)+ρ33(t) = 1 and ρnm(t) = ρ∗mn(t). Here, κ is the coupling coefficient
between states |2⟩ and |3⟩ due to spontaneous emission in a modified anisotropic vacuum [9].
This term is responsible for the appearance of quantum interference in spontaneous emission
[10].

The values of γ and κ are obtained by [9, 11, 12]

γ =
µ0µ

2ω̄2

~
ε̂− · ImG(r, r; ω̄) · ε̂+ =

1

2

(
Γ⊥ + Γ∥

)
, (8)

κ =
µ0µ

2ω̄2

~
ε̂+ · ImG(r, r; ω̄) · ε̂+ =

1

2

(
Γ⊥ − Γ∥

)
. (9)

Here, G(r, r;ω) is the dyadic electromagnetic Green’s tensor, where r refers to the position
of the quantum emitter, and µ0 is the permeability of vacuum. Also, ω̄ = (ω3 + ω2)/2 − ω1.
In addition, we define the spontaneous emission rates normal and parallel to the surface as
Γ⊥,∥ = µ0µ

2ω̄2Im[G⊥,∥(r, r; ω̄)]/~, where G⊥(r, r; ω̄) = Gzz(r, r; ω̄), G∥(r, r; ω̄) = Gxx(r, r; ω̄)
denote components of the electromagnetic Green’s tensor where the symbol ⊥ (∥) refers to a
dipole oriented normal - along the z-axis (parallel - along the x-axis) to the surface of the
nanostructure.

The plasmonic nanostructure considered in this study is a two-dimensional array of touching
silver-coated silica nanospheres [see Fig. 1(b) and (c)]. The dielectric function of the shell is
provided by a Drude-type electric permittivity given by

ϵ(ω) = 1−
ω2
p

ω(ω + i/τ)
, (10)

where ωp is the bulk plasma frequency and τ the relaxation time of the conduction-band electrons
of the metal. The dielectric constant of SiO2 is taken to be ϵ = 2.1. In the calculations we have
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Table 1. The values of Γ⊥ and Γ∥ for different distances D from the surface of the plasmonic
nanostructure for ~ω̄ = 2.4 eV. Γ0 is the spontaneous decay rate in free space and in our work
we take it Γ0 = 109 ns−1.

D (nm) Γ⊥ (Γ0) Γ∥ (Γ0)

10.4 27.081 0.105
20.8 6.417 0.038
31.2 1.774 0.021
41.6 0.559 0.021
52 0.196 0.026

taken τ−1 = 0.1ωp and ~ωp = 3.8 eV corresponding to silver. The lattice constant of the square
lattice is a = 104 nm and the sphere radius S = 52 nm with core radius Sc = 36.4 nm.

3. Numerical Results
The corresponding electromagnetic Green’s tensor which provides the corresponding
spontaneous emission rates Γ⊥ and Γ∥ is given by [12, 13, 14]

GEE
ii′ (r, r′;ω) = gEE

ii′ (r, r′;ω)− i

8π2

∫ ∫
SBZ

d2k∥
∑
g

1

c2K+
g;z

×

vgk∥;i(r) exp(−iK+
g · r)êi′(K+

g ) , (11)

with
vgk∥;i(r) =

∑
g′

Rg′;g(ω,k∥) exp(−iK−
g′ · r)êi(K−

g′) , (12)

and
K±

g = (k∥ + g, ±[q2 −
(
k∥ + g

)2
]1/2). (13)

The vectors g denote the reciprocal-lattice vectors corresponding to the 2D periodic lattice of
the plane of scatterers and k∥ is the reduced wavevector which lies within the surface Brillouin

zone associated with the reciprocal lattice [15]. When q2 = ω2/c2 < (k∥ + g)2, K±
g defines

an evanescent wave. The term gEE
ii′ (r, r′;ω) of Eq. (11) is the free-space Green’s tensor and

êi(K
±
g ) the polar unit vector normal to K±

g . Rg′;g(ω,k∥) is the reflection matrix which provides
the sum (over g’s) of reflected beams generated by the incidence of plane wave from the left
of the plane of scatterers [15]. Also, in Eq. (11), the terms corresponding to s-polarized waves
(those containing components with the azimuthial unit vector êi(K

±
g ) normal to K±

g ) have small
contribution to the decay rates and have been, therefore, neglected.

We use the above methodology and calculate the spontaneous emission rates normal and
parallel to the surface of the plasmonic nanostructure for different distances of the quantum
emitter from the plasmonic nanostructure. The results of the calculations are shown in Table 1.

We assume that the quantum system is initially in state |0⟩. This means ρ00(0) = 1 and for
all other elements ρnm(0) = 0. We are interested in the time evolution of the populations ρnn(t),
with n = 0, 2, 3, at δ = 0 (ω = ω̃), because, at this frequency, coherent population trapping may
occur in states |0⟩, |2⟩ and |3⟩ if κ = γ and γ

′
= 0 [8, 16, 17]. Here, κ and γ are never exactly

equal to each other (see the values of Table 1); however, we expect an interesting behavior of the
population dynamics at this frequency if γ

′
= 0. Therefore, we will present results obtained from

a numerical solution of the density matrix equations (2)-(7) using a fourth-order Runge-Kutta
method.
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Figure 2. The time evolution of the population ρnn(t) in states |n⟩. With solid curve we
present the population in state |0⟩, with dashed curve the population in state |2⟩ and with
dot-dashed curve the population in state |3⟩. Plot (a) shows results in the absence of the
plasmonic nanostructure, while the other plots depict results in the presence of the plasmonic
nanostructure. We take ~ω̄ = 2.4 eV, Ω = 1 ns−1, ω32 = 2 ns−1 and γ

′
= 0. In (b) D = 10.4

nm, (c) D = 20.8 nm, (d) D = 31.2 nm, (e) D = 41.6 nm and (f) D = 52 nm.

In Fig. 2 we present the population ρnn(t), with n = 0, 2, 3 as a function of time for γ
′
= 0.

We note that ρ22(t) = ρ33(t). When the quantum system is placed in vacuum [Fig. 2(a)], i.e.
in the absence of the plasmonic nanostructure, a transient weak excitation of the population to
states |2⟩ and |3⟩ occurs and the whole population is transfer by spontaneous emission to state
|1⟩ in about 10 ns. In the presence of the plasmonic nanostructure [Figs. 2(b)-(f)] the evolution
of the population is different and depends on the distance of the quantum emitter from the
plasmonic nanostructure. For distances close to the plasmonic nanostructure, such those shown
in Figs. 2(b) and (c), the population remains in states |0⟩ (mainly), |2⟩ and |3⟩ for much longer
times. For even longer distances, Fig. 2(d), a weak oscillation is obtained together with the slow
population decay. Similar behavior is also found for distances close or equal to the nanoparticle
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radius, Figs. 2(e) and (f), with the addition that in this case the populations exhibit stronger
damped oscillations. We note that similar behavior to the last figure is obtained for distances
that are within a few nanoparticle radii. For much larger distances the influence of the plasmonic
nanostructure becomes very weak, with no signature of the plasmonic nanostructure.

4. Summary
We have studied the controlled dynamics of the four-level quantum emitter coupled to a
plasmonic metamaterial. The plasmonic system we examined is a periodic two-dimensional
array of silver-coated silica nanospheres. An external electromagnetic field is applied to the
system and is used for the control of the dynamics of the quantum emitter. For the study of the
system’s dynamics, we combined the density matrix approach for the quantum emitter with ab
initio electromagnetic calculations for the plasmonic nanostructure. We then presented results
for the time evolution of the population of the different levels of the quantum emitter in both
the presence and the absence of the plasmonic nanostructure. We found that the population
evolution depends strongly on the distance between the quantum emitter and the plasmonic
nanostructure.
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