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Abstract. In this work the method of approximate particular solutions using compactly
supported kernels is investigated. In the work of [1] the globally supported radial kernels for the
construction of solution are used, and it is observed that for large scaled PDEs the differentiation
matrix is ill-conditioned. We extended the work of [1] for compactly supported kernels, in
order to solve large-scaled PDEs engineering sciences. The numerical scheme of the present
method of approximate particular solutions is very accurate and simple in implementation.
Three benchmark problems are solved by the present numerical scheme and the results are
compared to other methods in the literature.

1. Introduction
For the approximate solution of various types of PDEs, the method of approximate particular
solution (MAPS) is recently developed in [1]. In this approach the approximate particular
solution is obtained in such a way to satisfy the differential equation as well as the boundary
conditions [2]. In this numerical approach very simple and accurate kernel based numerical
scheme is obtained. In this approach, due to the radial symmetry of the special differential
operator, the integration is performed in the radial direction. In the present method due the
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global structure the system matrix is dense and ill-conditioned, and is unable to solve large-scaled
problems.

The finite element and finite difference methods are local in nature, and are very effective in
solving large-scaled problems. Like these mesh-dependent methods there are also some kernel
based methods which are local in their construction and are very effective for solving large
system in irregular domains [3–7].

Apart from these methods there are also several methods to overcome this difficultly such as
domain decomposition [8], the greedy algorithm [9], the extended precision arithmetic [10], the
improved truncated singular valued decomposition [11], iterative methods [12], fast multipole
expansion techniques [13].

Our purpose is to extend the MAPS for solving large-scaled problems. In our work we have
adopted the idea of using locally supported kernel functions resulted a localized formulation
in the construction of MAPS. In our procedure, we approximate the solution by a linear
combination of locally supported kernels. Contrary to global method, the local method have
sparse system matrix which can be solved easily and efficiently.

2. Description of the method
The idea to extend the method of approximate particular solution (MAPS) in [1] for locally
supported radial kernel is similar to the construction of the DRBEM [14], in which the operator
of Laplacian is retain as main operator on the left, and all the other terms are shifted to right
side. We consider the following elliptic partial differential equation in 2D

∆u = f(ξ, η), (ξ, η) ∈ Ω, (1)

Bu = g(ξ, η), (ξ, η) ∈ ∂Ω, (2)

where ∆, is a linear differential operator and B is a boundary differential operator, and f(ξ, η)
and g(ξ, η) are known functions. Using radial kernels, an approximate particular solution to
(25)-(27) is given by

u =
n∑

i=1

λiΦ(ri), (3)

where ri = ∥(ξ, η)−(ξi, ηi)∥ and {(ξi, ηi)}ni=1 are called the centers or trial points. In the method
of approximate particular solution the equation defined by

∆Φ = ϕ, (4)

can be solved analytically for kernel Φ in (19) for a given radial kernel ϕ [15]. Our aim is to
solve this equation for locally supported radial kernels.

It was proved in ( [16], Lemma 9.15, p. 130) that the transition Φ → −∆Φ allows to generate
new kernels under certain circumstances. Here, the construction explicit and transparent for
the standard families of radial kernels. In this construction the radial form of the Laplacian are
apply it to any kernel to generate new kernels.

If we write a radial kernel K in f -form with s = r2/2 = ∥ξ − η∥22/2, its d-variate Laplacian
follows via

∂

∂ξj
K(ξ − η) =

∂s

∂ξj

d

ds
f(s) = f

′
(s)(ξj − ηj) (5)

∂2

∂ξ2j
K(ξ − η) = f

′′
(s)(ξj − ηj)

2 + f
′
(s) (6)
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−∆K(ξ − η) = −2sf
′′
(s)− 2df

′
(s) (7)

the radial kernel defined by −∆Φ is positive definite, if Φ is positive definite. For conditionally
positive definite Φ of order m, the same argument applies, but the order of conditional positive
definiteness of of ∆Φ then is m− 1 because of the new factor in the Fourier transform.

Theorem 1. [17] The transition on radial kernels generates a radial kernel consisting of a
weighted sum (31)-(7) of two radial kernels, if f is the f-form of , and if the action of −∆ is valid
on the kernel. If, furthermore, the class of kernels is invariant under taking pairs of forward and
backward Fourier transforms in arbitrary dimensions. the resulting kernel is a weighted linear
combination of two radial kernels of the same family.

In the present study we choose the locally compactly kernel

Φ(r, ε) = (1− εr)8+(32(εr)
3 + 25(εr)2 + 8εr + 1) (8)

then we recover generate the new kernel

∆Φ(r, ε) = 44ε2(1− εr)6+(88(εr)
3 + 3(εr)2 − 6εr − 1) (9)

From equation (30), we have

△u =
n∑

i=1

λi△Φ(ri) =
n∑

i=1

aiϕ(ri) in Ω (10)

putting these values in (25)-(27), we get

n∑
i=1

λiϕ(ri) = f(ξ, η) (ξ, η) ∈ Ω (11)

n∑
i=1

λiBΦ(ri) = g(ξ, η), (ξ, η) ∈ ∂Ω (12)

For the numerical implementation, we need to choose two sets of interpolation points as shown in
Figure 1. We let ni be the number of interior points , {(ξj , ηj)}n1 and nb the number of boundary

points, {(ξj , ηj)}ni+nb
ni+1 ,. Furthermore, n denotes the total number of points; i.e., n = ni+nb, By

collocation method, we have

n∑
i=1

λiϕ(rij) = f(ξj , ηj), 1 ≤ j ≤ ni (13)

n∑
i=1

λiBΦ(rij) = g(ξj , ηj), ni + 1 ≤ j ≤ n (14)

where, rij = ∥(ξj , ηj) − (ξi, ηi)∥. The above system of equations can be easily solved by
standard matrix solver. Once {λi}n1 is determined, the approximate particular solution becomes
the approximate solution u of (25)-(27); i.e.,

u(ξ, η) =
n∑

i=1

λiΦ(ri) (15)

Problem 1. We consider the Poisson problem with the Dirichlet boundary condition:
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∆u(ξ, η) = −π2 (η sin(πξ) + ξ cos(πη)) , (ξ, η) ∈ Ω. (16)

u(ξ, η) = η sin(πξ) + ξ cos(πη), (ξ, η) ∈ ∂Ω. (17)

The parametric equation of the computational domain is given by

Ω = {(ξ, η)|ξ = ρ cos θ, η = ρ sin θ, 0 ≤ θ ≤ 2π}, (18)

where

ρ =

(
cos(3θ) +

√
2− sin2(3θ)

)1/3

. (19)

The analytic solution is given by s

u(ξ, η) = η sin(πξ) + ξ cos(πη) (20)

We solved the problem by MAPS using compactly supported radial kernels (8)-(9). The
computational domain considered for this problem and the analytic solution in the extended
domain are shown in Figures 1-2 respectively. We compute the L∞ and the RMS error norms
using CS-MAPS for different values of interior and boundary nodes. It can be seen from Figures
3-4, that with the increase in c, the sparsity of the differentiation matrix increases and at the
same time the accuracy decreases. We incorporate more and more interpolation nodes with a
small support, but at the expanse of decrease in optimal accuracy. It is demonstrated from the
table that these locally supported kernel-based MAPS is capable of solving large scaled Poisson’s
problems with reasonably acceptable accuracy.

Table 1. Comparison of the two method in terms of RMSE and L∞ for compactly supported
kernels.

nb 20 40 80 120 1000
ni 71 117 211 295 4832

CS-MAPS
Support c 0.5 0.5 0.5 0.5 2
RMSE 6.349e-003 1.411e-003 2.171e-004 1.252e-004 1.026e-004
L∞ 3.124e-002 4.341e-003 1.801e-003 1.077e-003 8.920e-004
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Figure 1. Plot of computational
domain for problem 1.
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Figure 2. Plot of RMSE versus
shape parameter for problem 1

Problem 2. In this problem we consider the inhomogeneous modified Helmholtz equation:

(∆− λ2)u(ξ, η) = f(ξ, η), (ξ, η) ∈ Ω. (21)

u(ξ, η) = g(ξ, η), (ξ, η) ∈ ∂Ω. (22)

where f(ξ, η) and g(ξ, η) are chosen according to the following analytical solution The parametric
equation of the computational domain is given by

Ω = {(ξ, η)|ξ = cos θ, η = sin θ, 0 ≤ θ ≤ 2π}, (23)

where
The analytic solution is given by

u(ξ, η) = sin(πξ) cosh(η) + cos(πξ) sinh(η) (24)

We solved this problem in a unit disk with CS-MAPS. For this problem the computational
domain and the analytic solution in the extended domain are shown in Figures 5-6. We used
the λ = 10, and different number of interior and boundary nodes. It shout be noted that
Helmholtz-type equations with large value of λ are mostly difficult. But with CS-MAPS the
solution accuracy is excellent for large values of λ. Further more we note that a very large as
well as a very small number of nodes can be used to achieve reasonably good accuracy. Here we
solve (∆− λ2)Φ = ϕ, for the radial kernel given in equation (8).

Table 2. Comparison of the two method in terms of RMSE and L∞ for compactly supported
kernels.

nb 50 100 150 200 500
ni 170 295 436 933 5778

CS-MAPS
Support c 1 1 1 1 4
RMSE 1.690e-003 7.285e-004 3.762e-004 9.741e-005 3.224e-003
L∞ 8.033e-003 3.939e-003 2.172e-003 5.904e-004 4.839e-004
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Figure 3. Plot of computational
domain for problem 2.
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Figure 4. Plot of RMSE versus
shape parameter for problem 2,
ni = 211, nb = 50

Problem 3. In this problem we consider the equation:

∆u(ξ, η) = f(ξ, η), (ξ, η) ∈ Ω. (25)

u(ξ, η) = sin(η2 + ξ)− cos(η − ξ2), (ξ, η) ∈ ∂Ω1. (26)

∂u(ξ, η)

∂n
= (∇(sin(η2 + ξ)− cos(η − ξ2))) · n, (ξ, η) ∈ ∂Ω2. (27)

where f(ξ, η) is chosen according to the following analytical solution The parametric equation
of the computational domain is given by

Ω = [0, 1]2, (28)

∂Ω1 = {(ξ, η) | ξ = 0, 0 ≤ η ≤ 1, ∧ ξ = 1, 0 ≤ η ≤ 1} (29)

∂Ω2 = {(ξ, η) | η = 0, 0 ≤ ξ ≤ 1, ∧ η = 1, 0 ≤ ξ ≤ 1} (30)

where The analytic solution is given by

u(ξ, η) = sin(η2 + ξ)− cos(η − ξ2) (31)

We solved this problem in a unit square [0, 1]2 with mixed boundary conditions. Along the
boundary Ω1 we applied Dirichlet boundary condition, while along the boundary Ω2 we used
Neumann boundary condition. We used here again the locally supported radial kernel (8). The
results are shown in Table 3, and Figures 11-12, which demonstrate the capability of CS-MAPS
with a very small as well as large number of nodes with mixed boundary conditions.
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Table 3. Comparison of the two method in terms of RMSE and L∞ for compactly supported
kernels.

nb 76 96 116 136 316
ni 324 529 784 1089 6084

CS-MAPS
Support c 0.6 0.6 0.6 0.6 2
RMSE 2.541e-004 1.106e-004 5.827e-005 2.646e-005 1.784e-004
L∞ 8.682e-004 5.183e-004 3.636e-004 1.760e-004 2.317e-003
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Figure 5. Plot of computational
domain for problem 2.
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Figure 6. Plot of RMSE versus
shape parameter for problem 2,
ni = 324, nb = 76

Conclusions In this work, we extended the work of [1] for compactly supported radial
kernels. We used the work of [?] to solve ∆Φ = ϕ. The solution for the Φ was not very trivial
for arbitrary radial kernel ϕ. It was not known why Φ be a radial kernel for a given arbitrary
kernel ϕ. Theorem 1 show that Φ is again a radial kernel for a given arbitrary kernel ϕ. The
present study demonstrated that the recently developed MAPS [1] may be very successful for
large data points with locally supported kernels.

[1] Wen P H and Chen C S (2010), The method of particular solutions for solvinf scalar wave equations, The
International Journal for Numerical Methods in Biomedical Engineering, 26 1878-89.

[2] Chen C S, Fan C M, Wen P H, (2012), The method of particular solutions for solving certain partial differential
equations, Numerical Methods for Partial Differential Equations, 28 506-22.

[3] Lee C K, Liu X, Fan S C, (2003) Local multiquadric approximation for solving boundary value problems,
Computational Mechanics, 30 396409.

[4] Sarler B, Vertnik R, (2006) Meshfree explicit local radial basis function collocation method for diffusion
problems, Computers and Mathematics with Applications, 21 126982.

[5] Shu C, Ding H, Yeo K S, (2003) Local radial basis function-based differential quadrature method and its
application to solve two dimensional incompressible navier-stoke equations, Computer Methods and Applied
Mechanics Engineering, 192 94154.

[6] Vertnik R, Sarler B, (2006) Meshless local radial basis function collocation method for convective-diffusive
solid-liquid phase change problems, International Journal of Numerical Methods for Heat and Fluid Flow
16 61740.

[7] Yao G, Kolibal J, Chen C S, (2011) A localized approach for the method of approximate particular solutions,
Computers and Mathematics with Applications, 61 2376-87.

4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare2015) IOP Publishing
Journal of Physics: Conference Series 633 (2015) 012050 doi:10.1088/1742-6596/633/1/012050

7



[8] Kansa E J, Hon Y C, (2000) Circumventing the ill-conditioning problem with multiquadric radial basis
functions: applications to elliptic partial differential equations, Computcomputer and Mathematics with
Applications 39 123-37.

[9] Hon Y C, Schaback, Zhou R X, (2003) An adaptive greedy algorithm for solving large RBF collocation
problems , Numerical Algorithms 32 13-25.

[10] Huang C S, Lee C F, Cheng A H D, Error estimate, optimal shape factor, and high precision computation
of multiquadric collocation method, Engineering Analysis with Boundary Elements, 31 614-23.

[11] Libre N A, Emdadi A, Kansa E J, Rahimian M, Shekarchi M, (2008) A stabilized rbf collocation scheme for
neumann type boundary value problems, Computer Modeling in Engineering and Science 24 61-80.

[12] Cheng A H D, Young D L, Tsai J J, (2000) Solution of Poisson’s equation by iterative DRBEM using
compactly supported, positive definite radial basis function, Engineering Analysis with Boundary Elements
24 549-57.

[13] Beatson R K, Greengard L, (1997) A short course on fast multipole methods, in: M. Ainsworth, J. Levesley,
W. Light, M. Marletta (Eds.),Wavelets, Multilevel Methods and Elliptic PDEs, Oxford University Press,
1-37.

[14] Partridge P W, Brebbia C A, and Wrobel L C, (1992) The Dual Reciprocity Boundary Element Method.
CMP/Elsevier.

[15] Golberg M A, and Chen C S, The method of fundamental solutions for potential, Helmholtz and diffusion
problems. In M. A. Golberg, editor, Boundary Integral Methods: Numerical and Mathematical Aspects,
pages 103-176. WIT Press, 1998.

[16] Wendland H, (2005) Scattered Data Approximation, Cambridge University Press.
[17] Bozzini M, Rossini M, Schaback R, Volonte E, Radial kernels via scale derivatives, Advances in Computational

Mathematics, DOI 10.1007/s 10444-014-9366-z. (2014)

4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare2015) IOP Publishing
Journal of Physics: Conference Series 633 (2015) 012050 doi:10.1088/1742-6596/633/1/012050

8


