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Abstract. We define two different systems of mathematical physics: the second order
differential system (SODS) and the first order differential system (FODS). The Newton’s second
law of motion and the nonlinear Schrödinger equation (NLSE) are the exemplary SODS and
FODS, respectively. We obtain a new kind of canonical equations of Hamilton (CEH), which
exhibit some kind of symmetry in form and are formally different from the conventional CEH
without symmetry [H. Goldstein, C. Poole, J. Safko, Classical Mechanics, third ed., Addison-
Wesley, 2001]. We also prove that the number of the CEHs is equal to the number of the
generalized coordinates for the FODS, but twice the number of the generalized coordinates for
the SODS. We show that the FODS can only be expressed by the new CEH, but not introduced
by the conventional CEH, while the SODS can be done by both the new and the conventional
CEHs. As an example, we prove that the nonlinear Schrödinger equation can be expressed with
the new CEH in a consistent way.

1. Introduction
The Hamiltonian viewpoint provides a framework for theoretical extensions in many areas of
physics. In classical mechanics it forms the basis for further developments, such as Hamilton-
Jacobi theory, perturbation approaches and chaos [1, 2]. The canonical equations of Hamilton
(CEH) for the continuous system in classical mechanics are expressed as [1]

q̇s =
δh

δps
, (s = 1, · · · , N), (1)

−ṗs =
δh

δqs
, (s = 1, · · · , N), (2)

where the subscript s, which in all cases denotes 1, · · · , N throughout the paper, represents
the components of the quantity of the continuous system [1], δh

δqs
= ∂h

∂qs
− ∂

∂x
∂h

∂qs,x
and δh

δps
=

∂h
∂ps

− ∂
∂x

∂h
∂ps,x

denote the functional derivatives of h with respect to qs and ps with qs,x = ∂qs
∂x and

ps,x = ∂ps
∂x , qs and ps are the generalized coordinate and the generalized momentum, respectively,

and h is the Hamiltonian density of the continuous system. The generalized momentum ps for
the continuous system is defined as ps =

∂l
∂q̇s

, and the Hamiltonian density h for the continuous
system is obtained by the Legendre transformation as

h =
N∑
s=1

q̇sps − l, (3)
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where l is the Lagrangian density. It should be noted that for the continuous system both qs
and ps are not only functions of time t, but also the spatial coordinate x, where the spatial
coordinate x is not the generalized coordinate. To distinguish t from the coordinate x, we refer
to time t as the evolution coordinate. ps and qs define the infinite-dimensional phase space. h
is a function of qs, ps and qs,x but not ps,x [1], so δh

δps
= ∂h

∂ps
, then Eq.(1) can be also expressed

as q̇s =
∂h
∂ps

.

Up to now, to our knowledge, the CEH appearing in all the literatures are of the form (1) and
(2), which are established based on the second order differential system (SODS) (the definition
of the SODS will be given in the following). Besides the SODS, there are a number of the first
order differential systems (FODS) (the definition of the FODS will also be given in the following)
to model physical phenomena. For example, the nonlinear Schrödinger equation (NLSE) is a
universal FODS. We will show that the conventional CEH, Eqs. (1) and (2), are not valid for
the NLSE, from which it is impossible to obtain the NLSE or its complex-conjugate equation.
Attempt was made to deal with the difficulty in Ref.[3], but the CEH for the NLSE they obtained
were inconsistent, as will be shown later. In this paper, we obtain a new kind of CEH valid
for the FODS, with which the NLSE can be expressed in a consistent way. We prove that the
new CEH and the conventional CEH are equivalent for the description of the SODS. But the
conventional CEH can not express the FODS.

2. First-order differential system and its canonical equations of Hamilton
The Newton’s second law of motion in classical mechanics, based on which the Hamiltonian
formulation is established, is the second order differential equation about the evolution
coordinate (here the evolution coordinate is time). In this paper we define the system described
by the second order partial differential equation about the evolution coordinate as the second
order differential system (SODS). Similarly, the first order differential system (FODS) is the
system described by the first order partial differential equation about the evolution coordinate.
For example, the NLSE [4]

i
∂φ

∂t
+

1

2

∂2φ

∂x2
+ |φ|2φ = 0, (4)

is an exemplary FODS, where the evolution coordinate t is the propagation direction coordinate.
For the FODS, the Lagrangian density must be the linear function of the generalized velocities

q̇s (see Ref. [5] for details), which can be expressed as

l =
N∑
s=1

Rs(qs)q̇s +Q(qs, qs,x),

Consequently, the generalized momentum ps, which is obtained by the definition ps =
∂l
∂q̇s

, as

ps = Rs(qs), (5)

is only a function of qs. There are 2N variables, qs and ps, in Eqs. (5). The number of Eqs.
(5) is N , which also means there exist N constraints between qs and ps. So the degree of
freedom of the system given by Eqs. (5) is N . Without loss of generality, we take q1, · · · , qν
and p1, · · · , pµ as the independent variables, where ν + µ = N . The remaining generalized
coordinates and generalized momenta can be expressed with these independent variables as qα =
fα(q1, · · · , qν , p1, · · · , pµ)(α = ν+1, · · · , N), and pβ = gβ(q1, · · · , qν , p1, · · · , pµ)(β = µ+1, · · · , N).
We obtained the CEH for the FODS (see Ref. [5] for details), which are

δh

δqλ
=

N∑
s=1

(
q̇s
∂ps
∂qλ

− ṗs
∂qs
∂qλ

)
+

N∑
α=ν+1

∂

∂x

∂h

∂qα,x

∂fα
∂qλ

, (6)
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δh

δpη
=

N∑
s=1

(
q̇s
∂ps
∂pη

− ṗs
∂qs
∂pη

)
+

N∑
α=ν+1

∂

∂x

∂h

∂qα,x

∂fα
∂pη

(7)

(λ = 1, · · · , ν, η = 1, · · · , µ, and ν + µ = N). The CEH, Eqs. (6) and (7), can be easily

extended to the discrete system, which can be expressed as ∂H
∂qλ

=
∑N

s=1

(
q̇s

∂ps
∂qλ

− ṗs
∂qs
∂qλ

)
and

∂H
∂pη

=
∑N

s=1

(
q̇s

∂ps
∂pη

− ṗs
∂qs
∂pη

)
, where λ = 1, · · · , ν, η = 1, · · · , µ, and ν + µ = N .

3. Application of the new canonical equations of Hamilton with symmetry to the
nonlinear Schrödinger equation
In this part, we will discuss the application of the new CEH with symmetry, Eqs. (6) and (7),
to the NLSE. It is known that the Lagrangian density for the NLSE can be expressed as [6]

l = − i
2(φ

∗ ∂φ
∂t − φ∂φ∗

∂t ) +
1
2 |

∂φ
∂x |

2 − 1
2 |φ|

4. The NLSE is complex, and therefore it is an equation
with two real functions, the real part of φ and its imaginary part. It is convenient to consider
instead the fields φ and φ∗ which are treated as independent from each other. Therefore, N (the
components of the quantity) for the NLSE equals two, i.e., there are two generalized coordinates,
q1 = φ∗ and q2 = φ, and two generalized momenta can be obtained as p1 =

i
2φ and p2 = − i

2φ
∗.

The Hamiltonian density for the NLSE can be obtained by use of Eq.(3) as [4]

h = −1

2

∣∣∣∣∂φ∂x
∣∣∣∣2 + 1

2
|φ|4. (8)

If the generalized coordinate q1 and the generalized momentum p1 are taken as the independent
variables, the remaining generalized coordinate q2 and the remaining generalized momentum p2
can be expressed as q2 = −2ip1 and p2 = − i

2q1, respectively. We should also note that the
Hamiltonian density h is also the function of qs,x, which are independent from qs and ps. Then
for the NLSE, the Hamiltonian density (8) should be expressed with the independent variables
q1, p1, q1,x and q2,x as h = −1

2q1,xq2,x− 2q21p
2
1. We should note that ν = µ = 1 and N = 2 for the

NLSE, which means that the equations (6) have only one equation, so do Eqs.(7). Therefore,
the CEH (6) and (7) will yield two equations for the NLSE. The left side of Eq.(6) is obtained as
δh
δq1

= 1
2
∂2φ
∂x2 + |φ|2φ, and its right side is −ṗ1+ q̇2

∂p2
∂q1

= −iφ̇. Then the NLSE (4) can be obtained.

Using the other CEH, the left side of Eq.(7) is obtained as δh
δp2

= −4q21p1 = −2i|φ|2φ∗, and its

right side is q̇1 − ṗ2
∂q2
∂p1

+ ∂
∂x

∂h
∂q2,x

∂q2
∂p1

= 2φ̇∗ + i∂
2φ∗

∂x2 . Then the complex conjugate of the NLSE is

also obtained. Therefore, the CEHs (6) and (7) are consistent in the sense that the NLSE can
be expressed with one of the two CEHs, and its complex conjugate can be expressed with the
other.

In Ref.[4], the CEH for the NLSE were considered to be the same as those for the SODS, that
is, Eqs. (1) and (2). Then, according to the definition pφ = ∂l/∂φ̇, pφ must be −i/2φ∗ but not
−iφ∗. It was artificially doubled in Ref.[4] so that pφ = −iφ∗ in Eq.[5.1.29] (to avoid confusion,
we replace the parentheses by the brackets to represent the formulas in the references) to make
the NLSE derived from the CEH (2). In fact, substitution of the Hamiltonian density (8) into

Eq.(2) only yields i
2
∂φ
∂t +

1
2∇

2
⊥φ+|φ|2φ = 0, which in fact is not the NLSE (4). In Ref.[3], the CEH

obtained by the authors are Eqs.[3.87] and [3.81], the latter is q̇s = ∂h
∂ps

.. Although the NLSE

can be derived from Eq.[3.87], its complex conjugation could not be obtained from the other,
Eq. [3.81]. We now show this claim. Substituting the Hamiltonian density (8) into the equation

q̇s =
∂h
∂ps

, the left side of it is obtained as ∂φ∗

∂t , and the right side is ∂h
∂pφ∗ = ∂h

∂φ
∂φ

∂pφ∗ = −2i|φ|2φ∗,

where pφ∗ = ∂l
∂φ̇∗ . Then the equation − i

2
∂φ∗

∂t + |φ|2 φ∗ = 0 can be obtained, which is absolutely

not the complex conjugate of the NLSE. Therefore, the CEH for the NLSE obtained in Ref.[3]
are inconsistent.

4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare2015) IOP Publishing
Journal of Physics: Conference Series 633 (2015) 012041 doi:10.1088/1742-6596/633/1/012041

3



4. Some further discussions about the new canonical equations of Hamilton with
symmetry
Now, we know that the CEH valid for the FODS are Eqs. (6) and (7), and the conventional CEH
valid for the SODS are Eqs. (1) and (2). We will prove here that the new CEH with symmetry,
Eqs. (6) and (7), can also be used to express the SODS. If all the N generalized coordinates qs
and N generalized momenta ps in Eqs.(6) and (7) are independent, then the CEH, Eqs. (6) and
(7), can be reduced to Eqs.(1) and (2). In fact, this is just the case of the SODS, where all the
generalized coordinates and the generalized momenta are independent. Consequently, the new
CEH with symmetry obtained in the paper can express not only the FODS but also the SODS.
In the other word, the new CEH, Eqs. (6) and (7), and the conventional CEH, Eqs.(1) and (2),
are equivalent for the description of the SODS, but the former are with some kind of symmetry
in form and the latter are lack of such symmetry. The conventional CEH, Eqs.(1) and (2), can
only expresses the SODS.

In addition, the number of Eqs. (6) and (7) is N (N is the number of the generalized
coordinates) in the case for the FODS, and is half of that of Eqs.(1) and (2). This can be
explained in the following way. For the SODS, the Euler-Lagrange equations are the second
order partial differential equations about the evolution coordinate, the number of which is N .
It is well known that one second-order differential equation can be reduced to two first-order
differential equations [7]. Then 2N CEHs, which are the first order partial differential equations
about the evolution coordinate, can be obtained from the N Euler-Lagrange equations. But it is
significantly different for the FODS that the Euler-Lagrange equations are the first order partial
differential equations about the evolution coordinate, from which only N CEHs are obtained.

5. Conclusion
We obtain a new kind of CEH, which are of some kind of symmetry in form. The new CEH with
symmetry can express both the FODS and the SODS, while the conventional CEH can only
express the SODS but impossibly express the FODS. The number of the CEH for the first order
differential system is N rather than 2N like the case for the second order differential system,
where N is the number of the generalized coordinates. The NLSE can be expressed with the new
CEH in a consistent way, but can not be expressed with the conventional CEH. The CEH for the
NLSE are two equations, which are consistent in the sense that the NLSE can be expressed with
one of the CEH and its complex conjugate can be expressed with the other. The Hamiltonian
formulation for the continuous system can also be extended to the discrete system.
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