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Abstract. We discuss the predictions of Newton’s universal gravitational law when using the
gravitational, mg, rather than the rest masses, m,, of the attracting particles. According to the
equivalence principle, the gravitational mass equals the inertial mass, m;, and the latter which
can be directly computed from special relativity, is an increasing function of the Lorentz factor,
v, and thus of the particle velocity. We consider gravitationally bound rotating composite states,
and we show that the ratio of the gravitational force for gravitationally bound rotational states
to the force corresponding to low (y = 1) particle velocities is of the order of (mp;/m,)? where
mp is the Planck mass (he/G)'/2. We also obtain a similar result, within a factor of two, by
employing the derivative of the effective potential of the Schwarzschild geodesics of GR. Finally,
we show that for certain macroscopic systems, such as the perihelion precession of planets, the
predictions of this relativistic Newtonian gravitational law differ again by only a factor of two
from the predictions of GR.

1. Introduction

Since the formulation [1] and frequent experimental confirmation [2] of the theory of General
Relativity it is generally accepted that Newton’s universal gravitational law is not accurate
enough under relativistic conditions [2]. For example it cannot describe the mercury perihelion
precession, whereas the theory of General Relativity (GR) is “not inconsistent” with it [3, 4].
Also the deflection of light passing near massive objects predicted by Newton’s gravitational law
is half the value predicted by GR which is in good agreement with experiment [3].

In testing Newton’s gravitational law little attention has being paid in the differences between
the rest, relativistic, inertial and gravitational masses of the particles involved.

Inertial and gravitational masses are equal to each other, according to the equivalence
principle [5], but the ratios of inertial or relativistic mass to the rest mass are unbounded
as the particle velocity approaches the speed of light [6].

Consequently the following quite important question arises when using Newton’s universal
gravitational law under conditions where the Lorentz factor, -, is significantly larger than unity:

Should one use the particle rest mass, m,, the relativistic mass, ym,, or the gravitational
mass, mgy, which is equal to the inertial mass, m;? This is the question discussed in the present
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paper and although it appears to be obvious that one should use the gravitational mass, myg,
rather than the rest mass, m,, or the relativistic mass, ym,, one may wonder why this point
has been discussed only recently [7]. There appear to be two reasons for this, first that it
has been discussed for years that Newton’s gravitational law fails under relativistic conditions,
which is certainly true when using rest or relativistic masses [2, 7], as also shown here, and
second that the velocities for the planets of our planetary system are of the order 10™%¢, so
that the corresponding Lorentz factors are of the order 10~® and thus the differences between
relativistic and gravitational masses are very small. This, however, is not the case for many
other astronomical systems [8, 9].

2. Rest, relativistic, inertial and gravitational mass
The inertial, m;, and thus the gravitational mass, mg, is related to the rest mass, m,, via

mg = m; = ’ygmo, (1)

where (= (1 —v%/c?)~1/2) is the Lorentz factor. This result was first obtained in A. Einstein’s
pioneering special relativity paper for linear particle motion [6]. It has been shown recently to
remain valid for arbitrary particle motion, including circular motion [7]. Consequently, Newton’s
universal gravitational law for the gravitational force between two particles of rest mass m,, each,
and velocities v, and vo relative to a laboratory observer, is

F — Gmgzlm972 — Gmgv%’y% (2)
r2 r2 ’

and for equal particle velocities v; and vy reduces to

2.6
L (3)

r2
This equation has been found to predict the existence of gravitationally confined states with
many of the properties of hadrons [7, 10] and to show that the rest masses of quarks are very
small, in the mass range of neutrinos [7, 13]. The ratio F'/F, of the force keeping two or three-
particle systems in orbit, divided by the same force computed for v ~ 1, is (1/2)(mp;/m,)?,
exactly half of the value predicted by GR [7].

3. SR treatment of the perihelion precession
According to Newton’s 2"¢ law the equation of motion of a body or particle of rest mass m,, is
given by

F =ma, (4)

where a is the acceleration. For example, for linear motion we have [11]:

d*y 7 Py, _3d%Yo
m =m =m
? dt2 ° y2dt2 0 e

F=mya= = Y3 Mt (5)

If the force is a gravitational one, then using the equivalence principle of inertial and gravitational
mass, m; and my respectively, and accounting for m; = v3my [6, 7, 11, 12] one obtains

GMmyy?
F - 7"2 (6)
From (5) and (6) it follows
ap, =y GM /1. (7)
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The proper acceleration, i.e. the one perceived on the rotating planet, e.g. on mercury, is
a, = GM/r?. (8)

It thus follows that one can perform the analysis as if moving on mercury (v = 1) and simply
replace GM by GM~/S.

Figure 1. Schematic of the mercury elliptical orbit (e=0.2054), showing the definitions of the
elliptical parameter (semilatus rectum) p, of the semimajor axis a, of the semiminor axis b, of
the perihelion 7_ and aphelion r; numbers indicate distances in 10? m.

The final expression obtained by GR for the perihelion precession of mercury or any other
planet moving on an elliptical orbit is [2, 4, 14, 15, 16, 17]

6mGM 6mGM

Ap = a(l —e?)c? T p )

where a is the semimajor axis of the ellipse, p is the elliptic parameter, also known as semi-latus
rectum, and e is the eccentricity (it is e = 0 for a cycle, 0 < e < 1 for an ellipse, e = 1 for a
parabola and e > 1 for a hyperbola) (Figure 1); p and a are related via

p=(1-¢éa. (10)

One observes in the second equation (9) that when considering the set of all ellipses,
including the cycle, of given ellipse parameter p, then Ay does not depend on the eccentricity
e. Consequently in the SR treatment given here we simplify the computation by considering a
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cycle of radius » = p = a. Actually, in order to keep the definition of perihelion uniquely defined,
we consider an ellipse of eccentricity e = ¢, where € is an arbitrarily small positive number, e.g.
€ < 107'2, which is sufficient for the present analysis.

For r = p = a the equation of motion of the rotating planet or, more generally object, is

Mmev? _ GMm,~° (11)
P p

obtained from the non-relativistic proper equation of motion observed on the planet, i.e.

mev:  GMm,

, 12
) pe (12)
by replacing GM with GM~%. Equation (11) yields
2 GM
= (13)
v p
which for v << ¢, as is the case here, thus v = 1, gives
v2 ~ GM/p, (14)
and thus from the definition of « it follows
1
= , 15
TR =G (19)
thus 1 3GM
3
= ~1+——, 16
VR A e T T e (16)
and oM
-1~ —. 17
gl 202 (17)
On the other hand, the rotational period, T, is given by
21p
T="= 18
-, (18)
and using eq. (14) one obtains
3 1/2 5\ 1/2
p p 1
T=2n|—="— =27 | =—— —=T,[1-3(yv—-1 19
ﬂ-(GM’)/G> W(GM) 73 0[ ('.Y )]7 ( )
where T, is the non-relativistic period corresponding to v = 1. It thus follows from (19)
AT =T —T,=—3(y—1)T,, (20)
thus AT
=-3(yv—1 21
=301 -1, 1)
and using (17)
AT 3GM
=— . (22)
T, 2pc?
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Accounting for the constant angular velocity, if follows

AT Ay
_ =7 2
T, o’ (23)
and thus it follows arOM
T
Ap= "7 24
= a (24)

which is exactly 1/2 of the value predicted by GR [14, 15, 16, 17].

Consequently, when using gravitational masses in the universal Newtonian gravitational law,
the resulting eq. (3) provides very good agreement (within a factor of 2) with the results of
general relativity (GR). It is interesting that the SR treatment leads to 1/2 of the GR treatment
results both for fm size systems and for macroscopic astronomical systems.
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