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Abstract. It has been established that the security of quantum key distribution protocols can
be severely compromised were one to permit an eavesdropper to possess a very limited knowledge
of the random sources used between the communicating parties. While such knowledge should
always be expected in realistic experimental conditions, the result itself opened a new line of
research to fully account for real–world weak randomness threats to quantum cryptography.
Here we expand of this novel idea by describing a key distribution scheme that is provably
secure against general attacks by a post-quantum adversary. We then discuss possible security
consequences for such schemes under the assumption of weak randomness.

1. Introduction
Considerable efforts have been advanced in recent years which have yielded good insights into
the relative structure of quantum theory. These efforts have been important from the view
of better understanding the quantum framework, but, interestingly, they have also provided
speculative arguments regarding the existence and structure of physical theories which may
well supersede quantum theory. These alternative physical theories have been formulated
under a set of mathematically intuitive operational representations, and are referred to as
general probabilistic theories. Within this class of general probabilistic theories, a possible
alternative to quantum theory called Boxworld has emerged. That aspect of Boxworld which
has identified itself from other general theories relates to the set of correlations it produces.
While a defining feature of quantum theory has been the non–local correlations it produces,
these being correlations that cannot be produced by any local hidden variable theory, Boxworld,
on the other hand, generates non–signalling correlations that are beyond those admitted by
quantum theory. These non–signalling correlations have extremely powerful features, and were
first studied by Popescu and Rohrlich, and accordingly called PR–boxes (Popescu and Rohrlich
1994). Indeed, to understand the potential of Boxworld, and general probabilistic theories is to
appreciate the significance of PR–boxes. Amongst others, PR–boxes offer a non-local resource
that would render communication complexity a trivial task, and they can also be used to violate
information casuality.

While Boxworld finds itself on the upside of advantage, the same certainly remains true for
quantum theory. Examples abound, but in relation to security and cryptography, there are
a number of pertinent results. Shor’s quantum algorithm holds profound implications for the
security of classical cryptography (Shor 1994), and, yet, despite this outstanding individual
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result, the concept of cryptography has managed to evade redundancy as quantum theory
comes equipped with its own style of cryptography called quantum key distribution (QKD).
QKD protocols enable pairs of communicating parties to produce shared random secret keys,
which in turn, can be used to implement an unconditionally secure encryptions. Assuming the
correctness of quantum theory, usual QKD protocols have been shown to be provably secure
against eavesdropping attacks. Against the backdrop of general probabilistic theories, QKD has
been found to be quite resilient. In particular, Barrett et al. (2005) have described a quantum
key distribution scheme that is provably secure against arbitrary attacks by a post-quantum
eavesdropper. In this post-quantum scenario, the eavesdropper is permitted to break the laws
of quantum theory, but is limited solely by the impossibility of superluminal signalling. This is
a remarkable result because, while the implication is that current QKD protocols may no longer
be appropriate, Barrett et al. (2005) have, simultaneously, provided a revised quantum scheme
that is secure against a non–signalling, post–quantum eavesdropper.

Quantum theory via key distribution has provided us with a provably secure way to
communicate, but were quantum theory to ever fail, Barrett et al. (2005) have shown that
we can rely on a quantum scheme that is secure against general attacks by a post-quantum
eavesdropper. So, a big hurrah for QKD! Or, is it? Recent work by Bouda et al. (2012)
examined QKD security issues arising when an adversary, aside from having full control of the
various quantum and classical channels, has very limited access to the random sources employed
by the communicating parties. They showed that with an increasing key length, only a negligible
control of the randomness was necessary to render QKD insecure. This result illustrated that a
vulnerability of quantum technology lies not with its science but in its practice of assuming
perfectly uniform random processes. Indeed, both academia and industries specializing in
commercial quantum technologies have blindly overlooked this fact by making assumptions
that are fine in theory but not in practice. In this paper, we will outline an approach to
examine the setup of a key distribution scheme robust against post-quantum attacks in light of
results presented by Bouda et al. (2012). In section 2, we will outline some some basic facts
relating to generalized probabilistic theories; in section 3, we present a quantum scheme based
on Barrett et al.’s construction; and in section 4, we discuss various quantities relating to weak
sources of randomness that may affect the real–world practical implementation of post-quantum
cryptographic setups.

2. Preliminaries
2.1. Non-signalling constraints
We shall now motivate an operational setup for defining general probabilistic theories. As
mentioned earlier, general probabilistic theories are compared and contrasted against the
correlations they produce. These correlations are best described in terms of system probabilities
that are ascribed to an outcome as a result of local measurements. Let p(a, b|x, y) denote the
probability of outcomes a and b given respective measurement choices, x and y. The value
p(a, b|x, y) respects the usual probability constraints. Thus, we have

0 ≤ p(a, b|x, y) ≤ 1 (1)

for all measurement and outcome choices, and, for any fixed choice of local measurements,∑
x,y

p(a, b|x, y) = 1. (2)

We assume that correlations occur independently of the spatial separation between the systems,
and demand that information cannot be communicated between the systems. This latter
condition forces us to exclude those correlations that would permit the superluminal transmission
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of information, and, instead, we ascribe to position that outcome probabilities, for any subset of
systems, must not be affected by local measurement choices of other systems. In mathematical
terms, we, therefore, require that:

p(a|x) =
∑
b

p(a, b|x, y) ∀y;

p(b|y) =
∑
a

p(a, b|x, y) ∀x. (3)

We refer to this requirement as the non-signalling principle.

2.2. Generalized probabilistic theories
Post-quantum correlations are described in terms of a set of conditional probability distributions.
However, it is often convenient to represent the associated generalized probabilistic theory by
a real vector space R whereby states s and effects e are specified by vectors such that 〈e, s〉
defines the probability of the effect e occurring in the state s. Therefore, analogous to quantum
theory, we can prepare the usual combination of states si with probabilities pi in the mixed state
s =

∑
i pisi with pi > 0 and

∑
i pi = 1. The set of allowed states is given by the convex state

space S ⊂ R, for which the set of pure states are represented by the extremal points of S.
Next, we correspond a measurement outcome to an effect. This is a function that maps every

state to a probability in the interval [0,1], and is well–defined for probabilistic mixtures of states.
Consequently, the set of allowed effects is the set of vectors ei ∈ R such that 0 ≤ 〈ei, s〉 ≤ 1
and

∑
i 〈ei, s〉 = 1 for all s ∈ S. The unit effect u is the unique effect that corresponds to the

measurement with only one outcome that is certain to occur; 〈u, s〉 = 1 for all s ∈ S. Finally,
we shall make use of unnormalized states s̃ = λs, λ ≥ 0, and note that the set of unnormalized
states yields the positive cone S+.

By way of example, we can demonstrate the versatility of generalized probabilistic theories
and recover both classical and quantum theories. In the case of classical theory, every pure
state si corresponds to an effect ei via 〈ei, sj〉 = δij , and mixed state representations have a
unique decomposition into pure states. The dimension of the associated system is given by the
maximal number of linearly independent vector that form a basis, and the system itself is given
by a simplex. In terms of quantum theory, states and effects are given as positive hermitian
matrices. Here, the action of an effect on a state is defined by the Hilbert-Schmidt inner product.
The unit effect is the identity matrix and normalized states have trace one.

3. Post-quantum cryptography
The motivation for wanting to consider theoretical frameworks beyond that of quantum theory
is entirely legitimate. If for no other reason than the fact that Shor’s algorithm revealed
fundamental implications for classical notions of security, we can be justified in wanting to
ensure nothing is lurking around the quantum corner (Shor 1994). While quantum theory
has been validated time and again, it is conceivable that some future experiment may expose
some limitation. This practical concern provides a compelling argument to investigate post–
quantum theories and their effects on quantum theory. To this end, the formulation of general
probabilistic theories have helped to uncover natural alternatives to quantum theory. For
instance, in Boxworld we have a theory which admits all non–local, non–signalling correlations.
We caution that theories of this type may be superseded by superluminal signalling theories.

Standard quantum key distribution schemes have been proven robust within realistic
environments. Interestingly, this robustness has only been demonstrated with respect to possible
attacks on the quantum information exchanged during the protocol. On the other hand, there is
an assumption that the eavesdropper possesses all knowledge of classical information exchanged.
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Furthermore, sources of classical randomness used in standard QKD protocols are implicitly
assumed to be unbiased and completely inaccessible to the eavesdropper. Bouda et al. 2012
argued that perfect randomness is, in fact, unrealistic and that information eventually leaks via
side channels, rendering it potentially vulnerable to the eavesdropper. As a result, Bouda et
al. 2012 showed that the admission of weak randomness negatively influences the security of
typical QKD protocols. It is precisely against this result, and the subsequent role of weakly
random stochastic processes, that we question the security levels of more recent key distribution
schemes. We shall now present a version of Barrett et al.’s construction, before going on to
outline how this approach may allow an analysis of weak stochastic sources on the robustness
of the construction, thereby taking into account all real-world practical threats.

Let us assume access to a d–dimensional irreducible state cone S+. Given a set of d linearly
independent pure states {s1, . . . , sd}, any measurement on this set will either disturb at least one
of the states or provide zero information in which case, we have a non–disturbing measurement.
Protocol 1: A post-quantum key distribution scheme
Let us suppose that a communicating party wishes to discuss in a manner that is secure from
arbitrary attacks by a post–quantum eavesdropper. The various stages of the corresponding
protocol are as follows:

1. The first half of the communicating party, Alice, prepares a set of k key systems, each of
which is randomly assigned to a state from the set {s1, s2}. Following this, Alice prepares a
set of n test systems, each of which is randomly assigned to a state from the set {s1, . . . , sd}.
Alice then sends all n + k prepared states in some random order to the second half of the
communicating party, Bob;

2. On successful receipt of the communicated set of n+ k states, Alice announces those states
that were originally assigned as key states and those that were assigned as test states;

3. On the set of test systems, Bob performs the measurement M = {e1, . . . , ed} with
ei, i = 1, . . . d a linearly independent set. Alice and Bob abort the protocol on the occasion
that any disturbance is revealed;

4. On the set of key systems, Bob performs the measurement M = {e1, e2} yielding

〈e1|s2〉 = 0, 〈e1|s1〉 > 0

〈e2|s1〉 = 0, 〈e2|s2〉 > 0

5. As the protocol has proceeded to stage 4, the resulting outcomes can be used to obtain the
secret key, whereupon s1 can be taken as 0 and s2 can be taken as 1.

4. Modelling weak stochastic processes
Within quantum key distribution, research has demonstrated the absolute necessity of perfectly
random processes to theoretically guarantee the secrecy of quantum transmissions – a secrecy
that, remarkably, is not vulnerable to technological progress. Within entanglement theory,
meanwhile, findings have illustrated how the manipulation of perfect randomness implies
computational and cryptographic tasks for which no classical analogues exit. Perfect randomness
is ubiquitous and, thus, quantum technologies have been dominated by this strict and expensive
assumption, despite that fact that devices may show a significant bias in their outputs. We
shall now outline a technique by which we can use this fact as a basis to model the sources of
randomness employed in the protocol above. By taking this line of argument, we hope to reveal
an understanding of how random processes possibly impact the protocol.

Sources of randomness are described by probability distributions, and the ideal source of
randomness for almost all protocols is the perfectly random source. However, perfect randomness
is very difficult to obtain in practice, and so we argue that a more appropriate model of
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randomness is that of weak randomness. Weak randomness has been extensively studied and is
well understood in classical information processing, see, for example, Dodis et al. 2004, Maurer
and Wolf 1997, and Renner and Wolf 2003. In light of this, we assume that a source exhibits
randomness to some degree. Thus, we allow the outputs of such a source to be distributed
according to any probability distribution displaying an adequate level of randomness. For what
follows, we shall quantify the amount of randomness of a distribution by the min–entropy of its
source. The min–entropy of the random variable X is defined by

H∞(X) = min
x∈X

(− log2 Pr (X = x)) . (4)

Min–entropy is a widely accepted measure of weak randomness, and possesses a varied list of
highly desirable properties (McInnes and Pinkas 1991). Importantly, min–entropy is sufficiently
general which means that many real–world stochastic sources can be defined in terms of a min–
entropy source. A noteworthy property of this source is that it readily models the most general
of information leaks. In particular, a fall in min–entropy directly relates to the the amount of
information learned by an eavesdropper, and in fact, a relatively small min–entropy decrease
may well yield a sizeable amount of information. Another aspect of min–entropy relates to
expected sequences. Here, an eavesdropper may be able exclude some sequences completely,
which may aid with the design of future attacks.

Some important min–entropy quantities that may be used to assess the relative security
merits of protocol above are as follows. A weak source of randomness is said to be an (n, b)–
source if it outputs n–bit strings that are drawn according to a probability distribution with
a min–entropy of at least b bits. Therefore, n–bit sequences have associated probabilities less
than or equal to 2−b. A perfect source occurs in the instance b = n. The min–entropy loss
describes the bias of the source and is denoted c = n − b. We have an (n, b)–flat distribution
if we have an (n, b)–source that is uniform on a subset of 2b strings. The min–entropy rate is
given by the quantity b/n, which achieves unity for perfectly random sources that deliver one
bit of entropy per bit produced. Finally, particular interest lies with the min–entropy loss rate,
which is denoted by quantity c/n. All of these quantities could prove to be very fruit tools when
considering the real–world implementation key distributions protocols, including those known
to be robust against general post-quantum eavesdroppers.

5. Future work and conclusion
In this paper, we have discussed a new topic of study called generalized probabilistic theories,
which paves the way for a more robust discussion of physical systems should limitations to
quantum theory be ever revealed. An interesting aspect of this discourse relates to cryptography
and general security matters. Here, we outlined a novel approach for assessing the security
parameters of cryptographic key distribution protocols that are known to be robust against
general post–quantum attacks.
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