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Abstract. We study the classical, quantum and semiclassical solutions of a Robertson-Walker
spacetime coupled to a massless scalar field. The Lagrangian of these minisuperspace models
is singular and the application of the theory of Noether symmetries is modified to include
the conditional symmetries of the corresponding (weakly vanishing) Hamiltonian. These are
found to be the simultaneous symmetries of the supermetric and the superpotential. The
quantisation is performed adopting the Dirac proposal for constrained systems. The innovation
in the approach we use is that the integrals of motion related to the conditional symmetries
are promoted to operators together with the Hamiltonian and momentum constraints. These
additional conditions imposed on the wave function render the system integrable and it is
possible to obtain solutions of the Wheeler-DeWitt equation. Finally, we use the wave function
to perform a semiclassical analysis following Bohm and make contact with the classical solution.
The analysis starts with a modified Hamilton-Jacobi equation from which the semiclassical
momenta are defined. The solutions of the semiclassical equations are then studied and
compared to the classical ones in order to understand the nature and behaviour of the classical
singularities.

1. Introduction
In this paper, we examine the classical, quantum and semiclassical behaviour of the FLRW
spacetime metric coupled to a massless scalar field with the method of conditional symmetries
which was first introduced in [1, 2]. The theory of variational symmetries has been extended to
include cases in which the lapse function is not gauge fixed. This supplies the superspace with an
additional degree of freedom and the theory with a gauge freedom, which leads to the appearance
of additional symmetries. At the classical level, the importance of the method consists in solving
first-order differential equations instead of the second-order Einstein equations. This method
is presented in section 2. At the quantum level, it can be considered as an approach to the
problem of time of quantum gravity in which one first quantises and then selects time variable
[3]. However, we adopt a more ambitious analysis and exploit the quantum solution to perform
a semiclassical analysis in order to gain insight on the behaviour of the classical singularities.
This analysis is performed in section 3. Finally, we discuss the results in section 4.
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2. Classical analysis for the massless field λ = 0 in FLRW with non flat k ̸= 0
spatial metric
The model we study is the FLRW closed universe coupled to a massless scalar field with the
following spacetime metric

ds2 = −N2(t)dt2 + a2(t)
[ dr2

1− kr2
+ r2 sin θ2 + r2 sin2 θdφ2

]
(1)

where N(t) is the lapse function which is not gauge fixed, a(t) is the scale factor and k is the
spatial curvature, which in our case takes the value k = 1. The total action of the gravitational
plus matter system is Stot = Sgrav+Smat =

∫
d4x

√
−g[R− 1

2g
µν∇µϕ∇νϕ] from which we obtain

the total Lagrangian of the system after discarding a term of total derivative is equal to

L = 6Nka− 6aȧ2

N
+

a3ϕ̇2

2N
(2)

This Lagrangian has the singular form

L =
1

2N
Gαβ(q)q̇

αq̇β −NV(q) (3)

where Gαβ(q) is the supermetric defined on the configuration space of the dependent variables
qα(t) and V(q) the superpotential. The presence of the lapse function makes this Lagrangian
explicitly invariant under the transformation t = f(t̃) which in turn leads to the existence of
additional symmetries on the superspace called conditional symmetries [1]. In the constant
superpotential parametrisation of the Lagrangian which can be obtained by the change N →
n = N

V (a,ϕ) , the conditional symmetries become the usual symmetries of the supermetric plus

the scaling symmetry. This leads to the existence of conserved quantities corresponding to the
Killing fields of the supermetric and a rheonomic integral, Qi = κi, Qh = κh +

∫
n(t)dt.

The supermetric of our model in this parametrisation becomes

G̃αβ =

(
−72ka 0

0 6ka4

)
(4)

and it has three Killing vector fields generating the symmetries of the configuration space (a, ϕ)

ξ1 = (
eϕ/

√
3

a
,−2

√
3eϕ/

√
3

a2
), ξ2 = (

e−ϕ/
√
3

a
,
2
√
3e−ϕ/

√
3

a2
), ξ3 = (0, 1) (5)

plus one homothetic field

ξh = (
a

4
, 0) (6)

The system of equations of the conserved quantities becomes

−
12e

ϕ√
3ka

(
6ȧ+

√
3aϕ̇

)
n

= κ1,
12e

− ϕ√
3ka

(
−6ȧ+

√
3aϕ̇

)
n

= κ2 (7)

6ka4ϕ̇

n
= κ3, −18ka3ȧ

n
= κh +

∫
n(t)dt (8)

The solution of the system cannot be fully specified because it contains a gauge freedom resulting
from the freedom of the lapse function. In order to find the full solution, we choose to gauge fix
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the matter field ϕ = ln t. After performing suitable coordinate transformations to absorb the
redundant constants, the final form of the spacetime metric is

ds2 = − λ

4
√
t(1 + t)3

dt2 +
λ
√
t

(1− r2)(1 + t)
dr2 +

λ
√
tr2

1 + t
dθ2 +

λ
√
tr2 sin2 θ

1 + t
dφ2 (9)

where we have set λ = − κ3√
3k3/2

. This solution satisfies the Euler-Lagrange equations of the

Lagrangian (2) and therefore it is valid. This metric has a singularity for early and late times,
that is when t → 0 and t → ∞. We will canonically quantise the system and then perform
the semiclassical analysis in order to study whether the singularity persists for the semiclassical
metric as well.

3. Canonical quantisation and semiclassical analysis
For the quantisation of our system we follow the scheme of canonical quantisation of constrained
systems [4] extended in [1] to include the quantisation of the conserved quantities Qi according

to the relation Q̂i ≡ − i
2µ(µξ

α
i ∂α + ∂αµξ

α
i ), with eigenvalues equal to their classical values

κi and measure on the Hilbert space of states equal to µ(a, ϕ) = 6
√
3a3k. The quantum

operators Q̂i cannot be imposed simultaneously because of the condition cnijκn = 0. Therefore

the compatible algebras are the two-dimensional (Q̂1, Q̂2) and the one-dimensional Q̂3. The

case of the one-dimensional algebra Q̂2 is not considered since it already belongs to a higher
dimensional subalgebra and gives a trivial result. Following the above mentioned steps and
solving the quantum equations

Q̂iΨ(α, ϕ) = κiΨ(α, ϕ), ĤΨ(α, ϕ) = 0 (10)

where i = 1, 2, 3 we find that the wave functions are respectively

Ψ12(a, ϕ) = A12e
i 1
4
a2e

− ϕ√
3 (κ1+κ2e

2ϕ√
3 ) (11)

Ψ3(a, ϕ) = eiϕκ3−
√

3
2
πκ3(c1e

√
3πκ3I−i

√
3κ3

(6a2
√
k)Γ(1− i

√
3κ3) + c2Ii

√
3κ3

(6a2
√
k)Γ(1 + i

√
3κ3))

(12)

In order to make contact with the classical solutions, we perform a semiclassical analysis based
on the Bohmian approach [5] first presented in the context of minisuperspace models in [2, 6].
To this end, the wave function is written in the polar form Ψ(qi) = Ω(qi)e

iS(qi) where Ω(qi) is
the amplitude and S(qi) is the phase of the wave function, which satisfies a modified Hamilton-
Jacobi equation with an additional quantum potential term [5] of the form U(x) ≡ −1

2□Ω. When
this quantum term vanishes we obtain the classical solution. The Hamilton-Jacobi equation
also defines the quantum canonical momenta defined as pi =

∂S
∂qi

from which the semiclassical
equations are formed by equating them with the classical canonical momenta defined by the
Lagrangian, thus having ∂S

∂qi
= ∂L

∂q̇i
. For the case of the two-dimensional algebra (Q1, Q2), the

wavefunction is S12 = 1
4a

2e
− ϕ√

3 (κ1 + κ2e
2ϕ√
3 ) and the coefficient A12 constant, thus leading to

the vanishing of the quantum potential. Therefore, it is expected that the solution will not
differ from the classical one. This indeed turns out to be the case when we solve the system of
semiclassical equations ∂L

∂q̇i
= ∂S12

∂qi
and the classical singularity is not resolved.

In the case of the one-dimensional algebra however things turn out to be different. First,
the wave function does not have the assumed polar form. In order to write it in this form,
two approximation limits are considered, one for small values of the scale factor and one for
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large. This represents early and late times of the universe repsectively. For early times, the
wave function is approximated by (up to constants)

Ψ3sm ≈ eiκ3ϕ cos
(√

3κ3 ln
(
3a2

√
k
))

(13)

while for late ones

Ψ3la ≈ eiκ3ϕ
cosh

(
6a2

√
k
)

√
a2
√
k
√
3π

(14)

The quantum potential in both cases is non-zero and equal to Vsm =
κ2
3

12ka4
for early times and

Vla = −1 − 1
144ka4

for late times. Even though the quantum potential is not the same in the
two limits, the phase function is common, S = κ3ϕ and the solution will be the same at the two

limits. The semiclassical equations −72ka2ȧ
n = 0, 6ka

4ϕ̇
n = κ3 have a gauge freedom for the scalar

field which we select to be such that the lapse function N(t) of the semiclassical element is the
same as the classical one, that is

ϕ(t) = α−
8× 33/4t

√
3/2

√
−48kt2/

√
3

κ1
− κ1

3 κ1κ
3/2
3

(
−3 +

√
1 + 144kt2/

√
3

κ2
1

2F1

(
1
2 ,

3
4 ;

7
4 ;−

144kt
2√
3

κ2
1

))
c3(144kt2/

√
3κ1 + κ31)

(15)

The semiclassical line element will then be

ds2 = − λ

4
√
t(1 + t)3

dt2 +
1

1− (− 4
λ)

2/3r2
dr2 + r2dθ2 + r2 sin2 θdφ2 (16)

This spacetime metric does not contain any singularities since invariants do not diverge for t → 0
and t → ∞. Therefore, for this case the singularities of the classical metric vanish.

4. Conclusions
The FLRW cosmological model filled with a massless scalar field was studied at a classical and
quantum level, exploiting the presence of additional symmetries. The innovation in this method
is that the lapse function is not gauge fixed. Under the presence of the conditional symmetries the
classical solution can be obtained by a first-order system, which is much easier to be integrated.
This method also has advantages on the quantisation, since the integrals of motion are imposed
as conditions on the wave function and the system of constraints is integrable. The final new
element in our viewpoint first introduced in [6] is the semiclassical analysis performed in the
context of a minisuperspace model following Bohm. The result was that, for the one-dimensional
subalgebra the spacetime is not the same as the classical one and the singularities dissapear for
early and late times, exactly at the limits where the classical singularities existed. This is
encouraging for obtaining interesting results for other more complicated cosmological models
such as the Bianchi cosmologies.
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