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Abstract. Using the procedure initiated in [14], we deform Lax-type equations though a
scaling of the time parameter. This gives an equivalent (deformed) equation which is integrable
in terms of power series of the scaling parameter. We then describe a regular Frölicher Lie group
of symmetries of this deformed equation
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Introduction
In [14], one of the main advances of this work is to get a (non formal) principal bundle where
the concept of holonomy makes sense rigorously. The geometric objects under consideration are
diffeological or Frölicher groups, which are regular in the sense that the exponential map exists
and is smooth. Diffeological spaces, developped by Souriau and his coworkers [2, 7, 10, 16] are
generalizations of manifolds. Independently, Frölicher spaces give a more rigid framework, that
also generalize the notion of manifolds [1, 3, 8]. The comparison of the two frameworks has
been made independently in [12] and in [18], see e.g. [14]. The aim of this paper is to show
how this framework can apply to the theory of Lax equations. A Lax equation [9] is a formally
integrable equation of the type : ∂tL = [P,L] where P,L are in most cases differential, pseudo-
differential, or difference operators. This equation integrates heuristically as a classical equation
on a group of matrices: there should have an unique solution, up to the initial value L(0),
given by L(t) = AdExpP (t)L(0). Unfortunately, very often, the operator ExpP (t) exists only at
a formal level. We propose to apply a scaling t 7→ qt to the time variable. The operator P (t) is
changed into an operator Pq(t) which is a monomial of order 1 in the q−variable, adapting the
ideas of [14]. This allows the machinery of q−deformed operators: the algebras considered are
now Lie algebras of (smooth) regular Lie groups. As a simple consequence, we get smoothness
of the unique solution Lq(t) with respect to P (t) and L(0); another consequence is that the
full space of symmetries is a diffeological or Frölicher group, and that a class of symmetries of
the q−deformed Lax equation obey also a Lax-type equation ∂tSq = [adPq , Sq]. This equation is
here interpreted as a holonomy equation, which integrates by virtue of the results of [14]. These
symmetries Sq are rigorously constructed when Lq is a q-deformed formal pseudo-differential
operator.
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1. Preliminaries: Frölicher Lie groups of formal series
We now turn to key results from [14]:

Theorem 1.1 Let (An)n∈N∗ be a sequence of complete locally convex (Frölicher) vector spaces
which are regular, equipped with a graded smooth multiplication operation on

⊕
n∈N∗ An, i.e.

a multiplication such that An.Am ⊂ An+m, smooth with respect to the corresponding Frölicher
structures. Then, the set 1 + A =

{
1 +

∑
n∈N∗ an|∀n ∈ N∗, an ∈ An

}
is a Frölicher Lie group,

with regular Frölicher Lie algebra A =
{∑

n∈N∗ an|∀n ∈ N∗, an ∈ An

}
. Moreover, the exponential

map defines a bijection A → 1 +A.

We mimick and extend the procedure used in [14].

Theorem 1.2 Let A =
⊕

i∈I Ai be a Frölicher I−graded regular algebra. Let G be a regular
Frölicher Lie group, acting on A componentwise. Then, G⊕A is a regular Frölicher Lie group.

Proof. Considering the exact sequence 0 → 1 +A → G⊕A → G → 0; there is a (global) slice
G → G⊕ {0A}.

In our work of Lax-type equations, we use the following group from [14]:Let M be a compact
manifold without boundary. We denote by FCl be the space of formal classical pseudo-
differential operators acting on C∞(M,R). We denote by FCl∗ the groups of the units of
the algebras FCl. Let q be a formal parameter. We define the algebra of formal series
FClq =

{∑
t∈N∗ qkak|∀k ∈ N∗, ak ∈ FCl

}
. This is obviously an algebra, graded by the order (the

valuation) into the variable q. Thus, setting An = {qnan|an ∈ FCl} , we can set A = Clq(M,E)
and state the following consequence of Theorem 1.1: Let FCl0,∗ be the Lie group of invertible
pseudo-differential operators of order 0. This group is known to be a regular Lie group since
Omori, but the most efficient proof is actually in [5], to our knowledge. We remark a short exact
sequence of Frölicher Lie groups: 0 → 1+FClq → FCl0,∗+FClq → FCl0,∗ → 0, which satisfies
the conditions of Theorem 1.2. Thus, we have the following:

Theorem 1.3 The group 1 + FClq is a regular Frölicher Lie group with regular Frölicher Lie
algebra FClq, and FCl0,∗+FClq is a regular Frölicher Lie group with Lie algebra FCl0+FClq.

2. On Lax equations and their symmetries
A PDE is of Lax type if there is a representation of the solutions u(t, x) ∈ C∞(R×M,C) in terms
of Lax operators, i.e. a smooth map u 7→ L(u) ∈ FPDO (formal pseudo-differential operators)
(very often, L is a differential operator), and another smooth map u 7→ P (u) ∈ FPDO which
satisfy a Lax equation such that u is a solution of the initial PDE if and only if the following
equation is fulfilled: {

∂tL(t) = [P (t), L(t)]
L(0) = fixed operator (initial value)

(2.1)

(here and in the sequel, we write L and P instead of L(u) and P (u) when it carries no ambiguity)
The couple (L,P) is called a Lax pair. If the path P is a smooth path of the Lie algebra g of a
regular Lie group G, if G acts on a Fréchet algebra of operators B that contains L(0), the path

L(t) = AdExpGP (t)L(0) (2.2)

is a solution of equation 2.1, yet very often a formal solution.

Example: the KdV equation. The KdV equation reads as ∂tu = 6u∂xu − ∂3
xu where

u(t, x) ∈ C∞(R2,R) ad has a Lax pair L = −∂2
x+u and P = −4∂3

x+3(∂xu+u∂x). the operator
P is of order 4, so that there is no Lie group G such that ExpGP (t) exists. Moreover, P depends
on u (essentially because the KdV equation is non linear).
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Let us note S the set of solutions of the initial PDE, which is assumed non empty and
equipped with the diffeology spanned by (see [11] for the link between diffeological spaces and
Fréchet manifolds):

- the trace diffeology as a subset of C∞(R×M,C),
- and the pull-back of the diffeology of FPDO from the maps u 7→ L(u) and u 7→ P (u).
The total set of symmetries of the initial PDE is the groupDiff(S), which is a diffeological

group. This space of symmetries is actually, to our knowledge, not studied. Instead of working
with S, we work with L(S). If S and L(S) are (diffeologically) isomorphic, then Diff(S) and
Diff(L(s)) are also isomorphic. We now restrict ourselves to smooth linear maps acting on the
vector space spanned by L(S) and P (S) in FPDO. Let us write formally the action of such a
symmetry S: if L(t) is a solution of 2.1, S(t).L(t) is also a solution, from which we get

(∂tS).L(t) = [adP , S] .L(t) (2.3)

Here, the map S is a smooth map S : L(S) → L(Span(L(S))). The map ϕ : S 7→
(∂tS).L(t) − [adP , S] .L(t) is linear and the (restricted groups of) symmetries of (2.3) are the
zeros of ϕ. This relation is now linear in S which allows to pass to infinitesimal symmetries, if the
algebra of symmetries under consideration is equipped with the functional diffeology. We get
here symmetries that are not in general exactly the ones described in [15], where projectable
symmetries are the symmetries coming from changing of coordinates, i.e. infinitesimal
symmetries in V ect(R×M).

3. Integration, symmetries and time scaling
We only assume that both P and L are in a fixed Fréchet algebra A with unit element, or in a
c∞−algebra if one prefers to work in the convenient setting [8]. Let us now build a corresponding
Lax equation in A[[q]]. We consider the paths P (qt) and L(qt) obtained by time scaling t 7→ qt.
Then, ∂tL(qt) = q(∂tL)(qt) = [qP (qt), L(qt)] for a fixed parameter q. We note by Lq(t) = L(qt)
and by Pq(t) = qP (qt). We get the following equation:{

∂tLq(t) = [Pq(t), Lq(t)]
L(0) = fixed operator (initial value) in A (3.1)

Let valq be the valuation of formal series in A[[q]] with respect to the q variable. We remark
that valqLq = 0 and valqPq = 1. We note by A[[q]]>0 the ideal made of formal series S such that
valqS > 0.

Theorem 3.1 The solutions of equation 3.1 in A[[q]] are such that: Lq(t) =

exp(Pq)(t).L(0). (exp(Pq)(t))
−1 where the the map exp is the group exponential A[[q]]>0 →

Id+A[[q]]>0.

The proof is a straightforward consequence of basic results on Lie groups. The serie

exp(Pq)(t), read as exp(Pq)(t) =
∑∞

i=0 ai(q) where ai(q) =
∫
t≥s1≥...≥si≥0

[∏i
j=1 Pq(sj)

]
(ds)i

Let us now look for symmetries of a Lax equation. A symmetry is a path S of linear invertible
operators on A such that, Assuming smoothness, we shall quickly go into more restricted classes
of symmetries along the lines of the last section. Applying the time scaling, we get, with the
obvious notations:

(∂tSq).Lq(t) =
[
adPq , Sq

]
.Lq(t) (3.2)

The map S → Sq is an homomorphism from the group of symmetries of (2.1) to the group of
symmetries of (3.1), and it appears to us that there should exist symmetries of (3.1) that are
not induced from symmetries of (2.1). The map ϕq : Sq 7→ (∂tSq).Lq(t) −

[
adPq , Sq

]
.Lq(t) is

linear and the symmetries of (3.2) are the zeros of ϕq. Such a problem appears non relevant to
the methods of resolution of this paper, and we leave the question of solving these two equations
open. Let us now turn to a special class of solutions.
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4. Symmetries as holonomy elements
Let us now simplify this equation, avoiding the Lq− term. Then, we get another Lax-type
equation

∂tSq =
[
adPq , Sq

]
(4.1)

and we can remark that the operator adPq is an inner derivation of A, which is of order 1 in q
since Pq is of order 1. Let In(A) be the Lie algebra of inner derivations of A. Let Inq(A) be
the q−graded algebra of operators spanned by qInA, endowed with the push-forward Frölicher
structure from A.

We have to check:

(i) Inq is a smooth regular algebra

(ii) IdA + Inq(A) is a regular Frölicher Lie group with Lie algebra Inq(A).

Let us remark that (ii) is a straightforward consequence of (i) and Theorem 1.1. Now,
we recall that smoothness in In(A) is induced by smoothness in A. Moreover, the inclusion
In(A) → C∞(A,A) is smooth in the Frölicher sense [8]. So that Inq(A) is a smooth algebra,
where the composition is smooth and bilinear. Finally the only checkpoint is that the paths
ada(t)adb(t)... are integrable . This is in particular true in algebras of formal pseudo-differential
operators, using the rules of composition of formal symbols. We can now apply the procedure
that we used for equations (3.1): the exponential expIdA+Inq(A) exists and

Sq(t) = ExpIdA+Inq(A)(adPq).Sq(0).
(
ExpIdA+Inq(A)(adPq)

)−1

is the unique solution to equation (3.2) with initial value Sq(0). We now analyze equation 4.1:
it extends to the path space of C∞(M,R)[[q]] × Aq which can be viewed as a trivial vector
bundle. Setting ∇ = d + adPq , we get a smooth connection on this fiber bundle. By the last
discussion, adPq takes values in a regular Frölicher group, and hence any path on C∞(M)[[q]]
lifts to a smooth path on Aq by holonomy theorem [14], and for any linear map S(0) that
transforms an initial value L(0) into another initial solution S(0).L(0), we get a smooth path of
operators t 7→ Sq(t) such that, if t 7→ Lq(t) is a smooth path which is solution of 3.1, the path
t 7→ Sq(t).Lq(t) is also a solution of 3.1.
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