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Abstract. Throughout various results of numerical simulations, it is well-known that MUltiple
Slgnal Classification (MUSIC) algorithm can be applied in the limited-view inverse scattering
problems. However, the application is somehow heuristic. In this contribution, we identify a
necessary condition of MUSIC for imaging of collection of small, perfectly conducting cracks.
This is based on the fact that MUSIC imaging functional can be represented as an infinite series
of Bessel function of integer order of the first kind. Numerical experiments from noisy synthetic
data supports our investigation.

1. Introduction

From the pioneering work of MUItiple SIgnal Classification (MUSIC) algorithm for estimating
the locations of a number of point-like scatterers, it has been remarkably developed and
successfully applied in various inverse scattering problems for finding locations of small scatterers
or shapes of crack-like inhomogeneities/extended targets, refer to [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13].

Almost every works are focused on the application of MUSIC in full-view inverse scattering
problems. In these results, it is confirmed that MUSIC produces very good results in full-view
problems but, theoretical reason of its effectiveness for imaging of curve-like perfectly conducting
crack is recently developed in [14, 15]. In these works, a relationship between MUSIC-type
imaging functional and Bessel function of integer order of the first kind is investigated and the
effectiveness of MUSIC and some undiscovered phenomenons are clearly identified. However, in
the limited-view inverse scattering problem, MUSIC produces poor results. This is recognized as
a general property of MUSIC, and this fact has been identified via various numerical examples,
refer to [2].

Motivated this, theoretical reason of this limitation of MUSIC has been identified and
examined that MUSIC can be applicable for detecting locations of point-like scatterers or cracks
of small length and extended thin electromagnetic inhomogeneities if the range of incident and
observation directions is not too narrow, refer to [16, 17]. However, when one tries to apply
MUSIC for imaging extended perfectly conducting crack, the selection of range of incident and
observation directions significantly affects the imaging performance. However, this phenomenon
is heuristically discovered so that theoretical treatment of MUSIC in limited-view problem should
be considered carefully.

In this contribution, we explore a necessary condition of MUSIC in limited-view inverse
scattering problem for imaging of arc-like perfectly conducting crack in two-dimensional space.
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This is based on the relationship with MUSIC-type imaging function and infinite series of Bessel
functions of integer order.

This paper is organized as follows. In Section 2, we briefly introduce the two-dimensional
direct scattering problem and the structure of MUSIC-type imaging function. In Section 3, we
discover a necessary condition for applying MUSIC in limited-view problem. In Section 4 results
of numerical simulation are exhibited in order to support our discover.

2. Direct scattering problem and structure of MUSIC
Let I' be a smooth curve describes crack and we denote u(x) be the time-harmonic total field
which satisfies

Au(x) + k*u(x) =0 in RAT

(with positive wave number k) and a Dirichlet boundary condition u(x) = 0 on I'. Note that
u(x) can be decomposed as u(X) = Upe(X) 4 Usear (X), Where u,.(x) = €#9* is given incident
field with incident direction 6 € S}( and U (x) is scattered field which satisfies the Sommerfeld
radiation condition. Here, S! is a connected, proper subset of two-dimensional unit circle S*.
Let ux (19, 0) be the far-field pattern of wu,..(x). Then, it satisfies

e (X) = ﬂx—, {%OW’) to <|>1<>}

uniformly in all directions ¥ = x/|x| and |x| — oc.

Now, let us introduce MUSIC-type imaging algorithm. Before starting, we assume that I’
is divided into M different segments of size of order half the wavelength A\/2. Then, based on
the Rayleigh resolution limit from far-field data, any detail less than one-half of the wavelength
cannot be seen, and only one point, say x,,, at each segment is expected to contribute at the
image space of the response matrix K (see [11, 12] for instance). Having in mind this, we consider
the collected Multi-Static Response (MSR) matrix such that

K = [Kj(9;,00)])_; = [teo(—0;, 0017, ,

where {ﬂj esSl:j=1,2,-- ,N} and {01 esSl:1=1,2, - ,N} are set of observation and
incident directions, respectively. Then, the singular value decomposition of K can be written as

M
K=UDV*~ > 0mUnV;,.
m=1

Note that the first M left-singular vectors, {U1, Uy, -, Uy}, provide an orthonormal basis for
K. Hence, one can define a projection operator onto the null (or noise) subspace:

M
Pnoisc = ]IN - Z UmU:’L
m=1

For any point z € R?, define a vector f(z) € CN*! such that f(z) = [e#0127 k022 ... (ikOn-2]T
Then, an image of z € I', follows from computing

I(2) = [P (£(2))| .

Based on [1, 4, 11, 12], map of Z(z) will exhibit large peaks at z = x,,, € I'.

Unfortunately, throughout above description, it is very hard to answer that why MUSIC
yields unexpected results in limited-view inverse scattering problem. For this, the structure of
MUSIC-type imaging functional Z(z) has been derived in [17] as follows.
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Lemma 2.1 Assume that N and k are sufficiently large. Then, Z(z) cam be written
2}1

D%h—xﬂ):4§§iJMMz—&MBm<an_9D>aw(M&W+%_2@ﬂ>. (1)

M D(klz — x,,
z@):{1—§; %L_elD

where z — Xy, = T [cOS(Onm), sin(¢m, )] and

Jo(k|z — xm|) +

2 2

Based on the property of Bessel functions, the terms Jy(k|z — Xp,|) and D(k|z — x,,|) will
contribute to and disturb the imaging performance, respectively. Therefore, we can conclude
that Z(z) is highly influenced by the range of incident directions.

3. A necessary condition for applying MUSIC in limited-view problems

Based on the result in Lemma 2.1, it is expected that if the term D(k|z —x,,|) is disappear, very
good results can be obtained via MUSIC. Note that z is arbitrary and x,, is unknown. This
means that we cannot make J,(k|z — x,,|) = 0 in (1) so, we must find a condition of the range
of incident directions such that

sin <”(9N2_ 91)) cos <n(9N i 921 — 2%)) =0.

Note that if 05 — 01 = 7 and Ox + 01 — 2¢,, = 7 then, D(k|z — x,,|) is identically zero. Hence,
if one can set the range 61 = ¢, and Oy = ¢, + 7, good results can be obtained via MUSIC.

Based on above observation, a necessary condition for applying MUSIC in limited-view inverse
scattering problem: let ¥ (x,,) denotes the slope of tangential line at x,,, € I'. Then, for obtaining
good results, the range of incident directions 61 and 6y must satisfy

01 = min {Y(x,,)} and Oy =7+ max{Y(x,,)} for x,€l, m=12--- M. (2)

A detailed description is to appear in an extended version of this contribution.

4. Results of numerical simulation
In this section, we exhibit some numerical results. For this, A = 0.4 is applied and two I'; are
chosen

Iy = {[s—0.2,-0.55*+0.5] : —0.5 < s < 0.5}

Iy ={[s+025 +s—03]: —05< s <05}.

Figure 1 shows maps of Z(z) with various range of directions when the cracks are I'y and T'.
This result shows that, an approximate shape of I'y can be identified when Oy — 0; = 7 (see
Figure 1(a)), and almost complete shape of crack can be identified when 6; and 6y satisfy (2),
refer to Figure 1(b). On the basis of the result in [15], complete shape of I'; can be imaged via
the map of Z(z) (see Figure 1(c)) when 6y — 6; = 2.

Now, let us consider the imaging of I's. Opposite to the previous result, we cannot recognize
the shape of I'y via the map of Z(z) with #; = 0 and O = 7 (see Figure 1(d)). On the basis
of the result in Figure 1(e), we can observe that if we select #; and 0y so as to satisfy (2), the
shape of I'y can be recognized via the map of Z(z). Same as the result in Figure 1(c), complete
shape of I'y can be imaged via the map of Z(z) when 6y = 0 and 0y = 2, refer to Figure 1(f).
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Figure 1. Maps of Z(z) with various range of directions for I'; (top row) and I'y (bottom row).
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