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Abstract.  
A new two–dimensional (2–D) time dependent model describing long-period variations of the 

Galactic Cosmic Ray (GCR) intensity has been developed. New approximations for the changes of the 

magnitude B of the Interplanetary Magnetic Field (IMF), the tilt angle  of the Heliospheric Neutral 

Sheet (HNS) and drift effects of the GCR particles have been included into the model. Moreover, 

temporal changes of the exponent  expressing the power law – rigidity dependence of the amplitudes 

of the 11–year variation of the GCR intensity have been added. We show that changes of the expected 

GCR particle density precedes changes of the GCR intensity measured by the Moscow Neutron (MN) 

monitor by about 18 months. So ~18 months can be taken as an effective delay time between the 

expected intensity caused by the combined influence of the changes of the parameters implemented in 

the time-dependent 2D model and the GCR intensity measured by neutron monitors during the 21 

cycle of solar activity. 

 
1. Introduction and Motivation  
 

Generally, to model a propagation of the GCR in the heliosphere is rather complicated problem. Difficulties 

are related to an accurate implementation of the temporal changes of parameters (among them obtained from 

direct measurements) into the transport equation that determines fundamental processes in the heliosphere 

and causes a modulation of GCR. An additional difficulty is related with the selection of the length of the 

modelling time interval, due to the existence of a varying delay time τ between the changes of the GCR 

intensity, on the one hand, and various parameters characterizing electro-magnetic conditions in the 

heliosphere, on the other. We present in figure 1 the temporal changes of the monthly smoothed sunspot 

number SSN (top panel), the GCR intensity I(CR) observed by the Moscow neutron monitor (middle panel), 

and the exponent of the rigidity spectrum of the GCR intensity variations [1] for the period of 1968–2012 

(bottom panel). In table 1 we present the maximal invers correlation coefficients corresponding to the delay 

times   for the pair of I(CR) and SSN and for the pair of I(CR) and the exponent . The SSN is a relative 

index describing the level of solar activity, but it is not in a straight line usable as a quantitative parameter to 

implement it in the transport equation of the GCR propagation. However, bearing in mind that the magnitude 

B of the IMF is proportional to the SSN and an inverse relationship between I(CR) and B (“CR-B”) is valid 

everywhere inside the termination shock [2], one can make use of correlation between the parameter SSN 

and I(CR) as an indication of the GCR modulation.  

For the positive (A>0) polarity period 1968-1976, delay time   is 2 months, and for the period 1990-2002 

that is zero. Hence, there is a clear polarity dependence of delay times   for various 11–year cycles of solar 

activity. Delay time   between SSN and I(CR) for periods 1977–1987 (A>0 (4 years) and A<0 (7 years)) is 

10 months and 14 months for the negative (A<0) polarity periods 2003-2012. However, we think that this 

problem needs a more careful study. Delay times   between I(CR) and exponent for all 11–year cycles of 

solar activity is near zero; that was expected, as far expresses the rigidity dependence of the amplitudes of 

the long-period variations found directly from neutron monitors data for given period of consideration. Thus, 

it must be noted that a caution about an existence of difficulties related to the selection of a length of the 

modelling time interval because of dynamical changes of delay time  , e.g., between SSN and I(CR) is not 
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groundless; to model the GCR propagation for any time interval needs a careful preliminary study of the 

dynamical changes of delay time  for the chosen time interval, and what is an extremely important, in model 

should be implemented different parameters with corresponding different delay time .  
 

Table 1. Correlation coefficients r and delay time  (in months) between the parameter SSN and I(CR) and 

between the changes of I(CR) and parameter for period 1968 to 2012. 
 

 

 
 

Figure 1. Temporal changes of the monthly smoothed SSN – sunspot number (top panel), I(CR) 

intensity observed by the Moscow NM (middle panel) and rigidity exponent (t) of the GCR 

intensity variations(bottom panel) for the period of 1968–2012. 

No. Periods r(SSN ; I(CR))  SSNCRI ),(  r( ; I(CR))   ),(CRI  

I 1968-1976 -0.87 0.01 12  -0.94 0.01 11  

II 1976-1987 -0.87 0.01 110  -0.71 0.01 10  

III 1990-2002 -0.93 0.01 10  -0.76 0.01 10  

IV 2003-2012 -0.88 0.01 114  -0.58 0.02 11  
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 Our aim in this paper is: (1) to construct time dependent 2–D model of the 11–year variations of the GCR 

intensity and algorithm solved by difference scheme method in C# programming language, (2) to consider 

11–year variation of the GCR intensity during the period 1976–1987 by the monthly smoothed data of the 

Moscow NM, in such way there are excluded fluctuations of the GCR intensity shorter than one month, (3) 

to implement in the Parker’s transport equation the parameters characterizing temporal changes (for the case 

of constant solar wind velocity U=400 km/s) of the magnitude B of the IMF, tilt angle  of the HNS and 

changes of drift effect of the GCR particles. We assume that drift effects have a maximum value normalized 

to 100% in the minimum epoch of solar activity (drift dominated epoch), and 20% in the maximum epoch 

(almost diffusion dominated period), and (4) we also implement in the model changes of the exponent  (for 

the first time) of the rigidity R spectrum of the long-period variations of the GCR intensity. The importance 

of the latter is demonstrated in [3], [4] and [5], where it is shown that in the case of almost constant solar 

wind velocity, a central role in the formation of the 11–year variation of the GCR intensity can be ascribed to 

the changes of the diffusion coefficient versus the solar activity. So, changes of the character of the rigidity 

dependent diffusion remain an essential source of the 11–year variation of the GCR intensity, playing a vital 

role in the formation of the rigidity dependence of the amplitudes of the GCR intensity variations.  

2. Model of the 11–year variation of GCR: 1976 – 1987. 

 

For a modelling we take the period of 1976–1987 (11–year cycle #21). Cycle #21 was chosen because of, 

(1) almost a symmetric changes of the monthly smooting of the GCR intensity were observed for ascending 

(A>0) and descending (A<0) epochs of the 11–year cycle of solar activity, and (2) during the cycle #21 the 

largest number (~7 events) of clearly expressed step like changes of the GCR intensity were observed 

comparing to any other 11–year cycle during last 50 years. These step like changes of the GCR intensity can 

be related to the Forbush decreases (Fds) [5]. However the roles of Merged Interaction Regions (MIRs) and 

Global Merged Interaction Regions (GMIRs) [6] as barriers for the propagation of the GCR particles in the 

heliosphere cannot be excluded [6] and [7]. Moreover in cycle #21 a pure inverse correlation between the 

temporal changes of the rigidity R spectrum exponent  and of the exponent y of the power law spectral 

density of the By component of the IMF turbulence is observed. Our calculations [3] show that the turbulence 

of the IMF have a Gaussian distribution and the GCR particles propagation can be considered as  normal 

diffusion for whole 11-year cycle #21; of course we accept that delay times  between changes of the GCR 

intensity, on the one hand, and various parameters characterizing electro-magnetic conditions in the 

heliosphere remain constant during the solar cycle #21, on the other.  

To model the 11–year variations of GCRs we use Parker’s non–stationary transport equation [8] and [9] 
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where N and R are the omnidirectional distribution function and rigidity of the GCR particles, respectively; 

 –the time, U –the solar wind velocity and dv  is the drift velocity. We set up the dimensionless density 
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(LISM) accepted as 00 4 IN  , where the intensity I0 in the LISM has the form: 

 54.222.18.2

0 18.185.511.21   TTTI  in [10], [11]; T is kinetic energy in GeV 

( ]G[938.0]G[938.0 222 eVeVeRT  , e is an elementary electric charges,   and 0  are the radial distance 
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and size of the modulation region; 
0 – is the characteristic time corresponding to the changes in the 

heliosphere for the certain class of the GCR variation; we considered in model 19760   and 1987S . 

The size of the modulation region 
0  equals 100AU, and the solar wind velocity 1400  skmU  is used 

throughout the heliosphere. The equation (1) for the dimensionless variables f, R and t in the 2–D spherical 

coordinate system  ,r  can be written, as: 
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rigidity R of the GCR particles and the time t. The anisotropic diffusion tensor of GCR 
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 [12]. This expression is equivalent to the standard formula for 

Dv   [13]. The heliospheric magnetic field vector 


B  is given as in [14] and [15]: 
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where H is the Heaviside step function changing the sign of the global magnetic field in each hemisphere '  

corresponds to the heliolatitudinal position of the HNS and er is the unite vector directed along the 

component rB  of the 2D Parker’s field [16]. Parker’s spiral heliospheric magnetic field is implemented 

through the angle  1sinarctan  Ur   in the anisotropic diffusion tensor for the GCR particles where 

  is the angle between magnetic field lines and radial direction in the equatorial plane. 

As an ad hoc assumption, a quasi linear theory (QLT) [21] formally arising from hard-sphere scattering (or 

the billiard ball diffusion) is considered as a more reasonable and simple tool for describing a propagation of 

GCR in heliosphere. The QLT is not generally the best approximation [17], [18], [19] and [20] for describing 

a propagation of large energy range of GCR particles, but it works well in the energy range to which neutron 

monitors and muon telescopes respond (for rigidities R>(10–15)GV) [22]. So, as an ad hoc assumption we 

employ the ratios of the perpendicular K  and drift 
dK diffusion coefficients to the parallel 

||K  diffusion 
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where for rigidities R= 10GV is accepted that 1 =3, i.e. 1.0 

IIK

K
  at the earth orbit. Then, changes of 

1  is determined by the Parker’s spiral magnetic field in the whole heliosphere. 

A parallel diffusion coefficient used in the model is expressed, as:  

      ,,0 tRKtKrKKKII       (5) 
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where ,/109.1 219

0 scmK     rrK 501 ; a function K(t) is introduced to make a consistent change of 

the diffusion coefficient IIK  throughout the 11–year cycle of solar activity. The expression 

  )4exp(3.2 ttK   implemented in equation (1), is presented in figure 2.   tRK ,  contributes to the 

changes of the parallel diffusion coefficient IIK  due to dependence on the GCR particles rigidity R. In the 

QLT this dependence is expressed as     tRtRK  ,  which is valid for rigidities R>10 GV [21], [22], 

[23] and [24]. The analytical expression of the  t  (figure 3) implemented in the model is shown in the 

figure caption.  

 

  

Figure 2. Temporal changes of the normalized parallel 

coefficient K(t) used in modeling.  

Figure 3. Changes in the exponent t in the period: 

1976–1987 normalized to <0;1>. The 1–year averages 

(dashed red line) and the trigonometrical approximation 

(solid blue line) are included in the model. 

 

The neutral sheet drift was taken into account according to the boundary condition method [26]. The delta 

function at the HNS is a consequence of the abrupt change in sign of the IMF. Changes of the magnitude B 

of the IMF (dashed line) in the considered period and its approximation (solid line) are shown in figure 4.  

We assume that the drift effect D(t) has maximum value (100%) in the minima epochs, 19761977 and 

19861987, and it is scaled down to 20% in maximum epoch of solar activity (figure 5). The temporal 

changes of the observed tilt angle  of the HNS in the range of 40 up to 700 (dashed red line) and its 

approximation 4.17.3607596.408)( 23  tttt  (solid blue line) are presented In figure 6. In 

addition, in the model the waviness of the HNS is implemented, using the formula of [25] 
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The equation (2) was transformed to the algebraic system of equations using the implicit finite difference 

scheme, and then solved by the Gauss–Seidel iteration method (e.g. [26]) using the following boundary 

conditions: 
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as well as the initial conditions 1100  GVRf  and ),,(),,,(
0 kk

RrftRrf
t

 
  

[26]. We start the calculations 

from the inner radius (r=0) of the spherical system.  
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The solutions for each k-layer of rigidity Rk where (Rk=100, 90, 80,….,10 GV) for the stationary case are 

considered as an initial conditions for the non-stationary case for the given rigidity R and at time t=0. 

 

  
Figure 4. Magnitude B of the IMF in the period between 

1976 and 1987 normalized to <0;1>. The yearly averages 

of data from SPIDR (dashed red line)  

Figure 5. Changes of the drift ratio D(t) normalized to 

the minimum epochs implemented in the model is shown 

by polynomial approximation. 

 

The results of the numerical solution of equation (2) for rigidity R=10 GV (dashed blue line), monthly 

averaged changes of the GCR intensity (solid red line) observed by the Moscow neutron monitor and its 

second order polynomial approximation (dotted red line) are demonstrated in figure 7. Figure 7 shows that 

the changes of the expected (dashed line) GCR particles density precede the smoothed by the second order 

polynomial approximation (dotted line) of the GCR intensity. To make clearer the existence of delay time 

between them we present in figure 8 the results of the numerical solution of equation (2) for rigidity R =10 

GV (dashed line) shifted for 18 months with respect to the second order polynomial approximation (dotted 

line) of monthly averaged changes of the GCR intensity observed by the Moscow neutron monitor. 

 

Figure 6. Yearly averages of the HNS tilt angle in the 

period 1976 and 1987 (dashed red line) and the 

approximation included in the model (solid blue line) 

normalized to < 0;1 >. 
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Our analysis shows that the delay time is ~18 months [27]. So, ~18 months can be accepted as an effective 

delay time caused by the combined influence of all parameters implemented in the 2D model for the period 

1977–1987. 

  
Figure 7. Changes of the amplitude of the 11–year 

variation of the GCR normalized intensity (red solid line) 

and approximated observed changes of the GCR intensity 

(red dotted line). Model – the solution of the equation (1) 

for the rigidity of 10 GV (blue dashed line) 

Figure 8 Shifted solution of the equation (1) by 18 months 

(dashed green line) with respect to the approximated 

observed changes of the GCR intensity (red dotted line). 

 

Recently Bobik et al.,[28] developed a 2-D stochastic MC code for GCR  particles propagation across the 

heliosphere, and have received an acceptable agreement between modeling results of antiproton to proton 

ratios (aP/P) and observations by BESS and PAMELA. Also, they estimate two specific times - (1) tsw ~ 14 

months, time needed by solar wind to  expend  from the outer corona up to 100AU with a speed 400 km/s, 

and (2) a) time ev ~ 1month and b) time ev ~ few days needed for stochastic evolution of particles in 

heliosphere with energies of 10 GV and 200 MeV, respectively. Besides, in paper is touched upon an 

important problem dealing with GCR modulation, namely, a necessity to consider a whole heliosphere as a 

consisting from small regions with different electromagnetic conditions, e.g., determined by monthly 

averaged parameters. Similar study has been performed in various papers, among them in [29], where was 

taken into account that the free path of GCR scattering is controlled by the real distribution of the Sun’s 

coronal green line intensity (CGLI). 

 

Conclusions 

 

1. A new 2D time dependent model of the 11–year variation was developed. This model implements the 

parameters characterizing the temporal changes of the magnitude B of the IMF, tilt angle  of the HNS for 

the period of 1976–1987 of cycle #21 and the changes of drift coefficient of the GCR particles versus the 

solar activity. The drift coefficient of the GCR particles has a maximum value ~ 100% in the minimum 

epoch (drift dominated period), and 20% in the maximum epoch (almost diffusion dominated period).  

2. In the model temporal changes of the rigidity spectrum exponent , characterizing a rigidity dependence 

of amplitudes of the 11–year variations of the GCR intensity, were implemented for the first time. 
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3. The temporal changes of the parameters implemented in the 2D model have different delay times with 

respect to the temporal changes of the smoothed experimental data of the GCR intensity observed by 

Moscow neutron monitor. We show that an acceptable compatibility is kept for the period of 19761987 

(solar cycle #21), when the minimum of the expected temporal changes of the GCR particles density is 

shifted by 18 months with respect to the minimum of the temporal changes of the smoothed experimental 

data of the GCR intensity.  

4. We conclude that a delay time ~18 months can be accepted as an effective delay time caused by the 

combined influence of all parameters implemented in the 2D model. Generally, a direct implementation 

of the delay time τ in modeling is a important problem needing additional study.  
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