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Abstract. The PAMELA and the ARINA experiments are carried out on the board of satellite 

RESURS-DK1 since 2006 up to now. Main goal of the PAMELA instrument is measurements 

of high energy antiparticles in cosmic rays while the ARINA instrument is intended studying 

high energy charged particle bursts in the magnetosphere. Both of these experiments have a 

possibility to study trapped particles in the inner radiation belt. Complex of these two 

instruments covers proton energy range from 30 MeV up to trapping limit (E= ∼2 GeV). 

Continuous measurements with the PAMELA and the ARINA spectrometers include falling 

and rising phases of 23/24 solar cycles and maximum of 24
th

 one. In this report we present 

temporal profiles of proton flux in the inner zone of the radiation belt (1.11 < L < 1.18, 0.18 < 

B < 0.22G). Dependence of proton fluxes on a magnitude of the solar activity was studied for 

various phases of 23/24 solar cycles. At that it was shown that proton fluxes at the solar 

minimum are several times greater than at the solar maximum. 

1. Introduction 

Measurements of trapped and quasi-trapped radiation of high energy (E>30 MeV) at the low altitudes 

(h<1000km) have a great importance as well for theoretical models as for engineering purposes. These 

altitudes are heavily populated with spacecrafts including ISS and manned spacecrafts. It is known 

that high energy particles (greater than 30 MeV) in radiation belt have negative impact on electronics 

[1-4]. For example in [3] and [4] a correlation between passing through the inner radiation belt area 

and a degradation of solar cells was shown. Moreover interactions of particles with residual 

atmosphere cause difficulties for theoretical prediction of trapped fluxes due to variations of its 

density. New data measured on a boundary of particle trapping could help in better understanding of 

particle loss mechanisms. At low L-shells fluxes of trapped particles vary with time, as it is shown for 

example in [5]. In this paper also an anticorrelation between fluxes and radio flux at wave length 10.7 

cm characterizing the solar activity was shown. Usually this anti correlation is explained by variations 

in residual atmosphere density in the near Earth space [6]. Today we have a lack of long period 

accurate measurements of high energy (E>100 MeV) particle fluxes at low altitudes (h<1000 km) 

continuing at least one full solar cycle. Widely known POES-program lasts several solar cycles but it 

has a problem with systematic uncertainties [7]. And though methods for taking into account factor of 

degradation of detectors were developed [8] new measurements are necessary for independent 

checking of those results. Now de-facto standard models for calculation in radiation belt AP8 max and 

AP8 min [9] have known restrictions for lower edge of inner belt. They have been discussed many 

times, see [10] – [18]. The most important ones are that it is based on measurements of 60-70
th
 years 

and not considering changing Earth’s magnetic field. Magnetic dipole moment is decreasing and 

magnetic shells sink into atmosphere causing more extensive particle lost. There are also other 

empirical models such as PBS97 [19], Low Altitude Trapped Radiation (LATR) [20], Trapped Proton 

Model (TPM-1) [21], Combined Release and Radiation Effect Satellite Proton Model (CRESSPRO) 

[22], NOAAPRO model (more detailed survey see in [23]) But all of them are static and do not cover 

full solar cycle. There are also theoretical models [24],[25], which include the solar activity variations, 

but their applicability for nowadays should be confirmed by modern measurements. Detailed analysis 

of trapped proton flux time variation based on POES (NOAA-10, NOAA-15) data for 21st-23rd solar 

cycles has been made in work [26]. A strong anti correlation between atmosphere density, which in 

turn depends on solar activity, and proton fluxes at near Earth L-shells were obtained. At present the 

PAMELA and the ARINA instruments have been operating on the orbit for more than 8 years. They 

collected great amount of data at different periods of solar activity from the minimum of 23
rd

 cycle to 

maximum of 24
rd

 cycle. Main goal of this work is to present variations of trapped proton fluxes at the 

lower edge of the inner radiation belt with the PAMELA and the ARINA spectrometers along with the 

solar activity changes. 

2. Experiments and instruments 
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2.1. The RESURS-DK1 satellite 

The Resurs-DK1 satellite which carries the PAMELA and the ARINA instruments was launched on 

15
th
 June 2006 into an elliptical orbit with altitudes of 350-610 km and an inclination of 70.4 degrees. 

The orbit was circularised on 10 Sep 2010 to constant 573 km altitude. At these altitudes the 

instrument crosses the radiation belt in the South Atlantic Anomaly zone 6-8 times a day, so it allows 

collecting enough data in this region to study trapped particle fluxes with high statistical accuracy.  

2.2. The PAMELA spectrometer 

The PAMELA instrument was designed for study of antiparticles in cosmic rays, but it also has 

possibilities to measure trapped particle flux of energies greater than ~80 MeV. The PAMELA 

apparatus, as shown in figure 1, compounds of following subdetectors: a time of flight system (ToF), a 

magnetic spectrometer, an electromagnetic calorimeter, an anticoincidence system (CAS, CAT, 

CARD), a shower bottom scintillator and a neutron detector. In this analysis ToF and anticoincidence 

system was used. ToF produces a trigger signal if all of its planes are hit (i.e. it mainly registers 

protons with energy more than 80 MeV) and determines particle velocity and direction. For more 

detailed information see [27].  

2.3. The ARINA spectrometer 

The ARINA spectrometer originally was designed to study high-energy charged particle bursts in the 

magnetosphere. It consists of 10 scintillator plates and has capability to identify electrons and protons 

and to measure energy of particles by its range in a multilayer detector. Scheme of the ARINA 

instrument is shown in figure 2. Energy range of ARINA is 30 – 110 MeV. For more detailed 

information see in [28]. 

 

Characteristics of both instruments are shown in table 1. It is seen that they complement each other by 

energy range. Different orientation of their axes also allows enhancing angular cover. That fact that 

both apparatuses are installed onto the same satellite and have the same external conditions and 

overlapping energy ranges gives an opportunity to crosscheck results on its boundaries of sensitivity.  

 

Table 1. Characteristics of Instruments. 

 PAMELA  ARINA 

Orientation on the board  Pointing to zenith Perpendicular to orbit plane 

Field of view  16° *19° 20°*20° 

Geometrical factor  25 cm
2
Sr 10 cm

2
Sr 

Angular resolution  ±2° ±7° 

Available trapped protons energies  80 MeV – trapping limit  30 – 110 MeV 

 

3. Experimental data 

For analysis data for period from June 2006 till November 2014 were used. For both apparatuses 

trapped particles were considered. For the PAMELA spectrometer downgoing particles producing 

signals in S1, S2 and S3 detectors of ToF ( it corresponds to protons with E>80 MeV) were taken into 

analysis. In the ARINA spectrometer protons stopped in 8
th
 or 9

th
 layers and producing no signal in 

C10 plane have been considered. That corresponds to proton energy of 80 – 110 MeV. For both 

spectrometers the same geomagnetic areas and pitch-angles of their main axis equal to 85 – 95° were 

chosen. The South Atlantic Anomaly region was selected by L<1.20 and B<0.23G criterion, where L 

is McIlwain parameter describing set of the Earth magnetic field lines and B is intensity of the Earth 

magnetic field, for their calculation the IGRF11 model was used [28]. Because fluxes strongly depend 
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on L and B parameters, the L,B space was divided into small bins and for each of them proton fluxes 

depending on time were obtained. L interval was divided into bins dL=0.005 and B into dB=0.001 for 

PAMELA and dL=0.02 and dB=0.005 for ARINA. To separate equatorial fluxes a parameter B/B0 

also was calculated with the IGRF11 model. Contamination of galactic cosmic ray component is 

minimal for PAMELA as the geomagnetic area selected is below cutoff rigidity 10 GeV and populated 

mostly with secondary low energy particles. That part of galactic cosmic rays, which is still included 

in the flux, is not affected by solar modulation and thereby contributes in the radiation belt rate evenly 

over whole observation period and does not influence the time profile. For ARINA there is no 

contamination by galactic cosmic rays at all since it has upper energy limit about 110 MeV. 

 

4. Results and discussion 
In this article proton fluxes of the PAMELA and the ARINA instruments are shown for period from 

June 2006 to November 2014 including solar minimum of 23/24 cycle and current solar maximum of 

24
th
 cycle. This time span is very interesting because solar activity of current maximum of the 24

th
 

solar cycle is relatively low and characterised by 2 years time delay from expected one. In figure 3 as 

example time profiles of proton flux on L=1.14-1.16 and B/B0=1.00-1.07 i.e. equatorial flux are 

shown, the same results were obtained for each cell in LB space described above. Green line presents 

smoothed f10.7 cm wave length flux intensity characterising solar activity level. It is seen that the 

PAMELA and the ARINA data are in agreement and both of them anti correlate with f10.7 flux 

intensity. Different spread in fluxes values between solar minimum and maximum measured by the 

PAMELA and the ARINA spectrometers can be explained by different mean energy of particles taken 

into analysis. In figures 4 and 5 proton fluxes of ARINA, PAMELA, count rates of NOAA-

15(MEPED) and AP8-MIN and AP8-MAX model calculation are shown depending on the Earth 

magnetic field B (corresponding B/B0 interval is 1.0 – 1.07) for the solar minimum and the solar 

maximum respectively. The NOAA-15 data were normalized on the ARINA fluxes. In these figures a 

good agreement also is seen. Moreover the PAMELA and the ARINA data go to the lower B, where 

AP8 does not give any results.  
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Figure 1. Layout of the PAMELA 

spectrometer  

 Figure 2. Layout of the ARINA spectrometer 
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Figure 3. Proton flux time variations 

measured by PAMELA (black curve) 

and ARINA (red curve) for L-shells 

1.14 – 1.16 (B/B0=1.0-1.07, i.e. 

equatorial flux) and f10.7 cm 

wavelength solar radio flux (green 

line) 

 

 

 

 

 

Figure 4. Proton flux vs B dependence measured 

by the ARINA (red triangles), the PAMELA 

(black squares), MERED on NOAA-15 (blue 

circles)[26], and AP8MIN calculations (blue 

curve), for solar minimum and L=1.14 – 1.16 

 Figure 5. Proton flux vs B dependence measured 

by the ARINA (red triangles), the PAMELA 

(black squares), MERED on NOAA-15 (blue 

circles)[26], and AP8MIN calculations (blue 

curve), for solar maximum and L=1.14 – 1.16 
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5. Conclusion 

In this work time variations of proton fluxes with energies E>80 MeV at the low edge of the inner 

radiation belt with PAMELA and ARINA instrument were obtained. An anti correlation between flux 

and level of the solar activity was shown. Flux dependence on B for different L-shells in interval 1.12 

- 1.20 has been obtained. Good agreement between PAMELA and ARINA data is seen. 
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