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Abstract. R-parity violating supersymmetric models (RPV SUSY) are becoming increasingly
more appealing than its R-parity conserving counterpart in view of the hitherto non-observation
of SUSY signals at the LHC. In this paper, RPV scenarios where neutrino masses are naturally
generated are discussed, namely RPV through bilinear terms (bRPV) and the “u from v”
supersymmetric standard model (urSSM). The latter is characterised by a rich Higgs sector that
easily accommodates a 125-GeV Higgs boson. The phenomenology of such models at the LHC
is reviewed, giving emphasis on final states with displaced objects, and relevant results obtained
by LHC experiments are presented. The implications for dark matter for these theoretical
proposals is also addressed.

1. Introduction
Supersymmetry (SUSY) [1] is an extension of the Standard Model (SM) that assigns to each SM
field a superpartner field with a spin differing by half a unit. SUSY provides elegant solutions
to several open issues of the SM, such as the hierarchy problem, the nature of dark matter [2],
and the grand unification. SUSY is one of the most relevant scenarios of new physics probed at
the CERN Large Hadron Collider [3], yet no signs of SUSY have been observed so far. In view
of these null results in conventional SUSY searches, it becomes mandatory to fully explore non-
standard SUSY scenarios involving R-parity violation (RPV) [4] and/or quasi-stable particles.

R parity is defined as R = (—1)3(B~=1)+25 where B (L) is the baryon (lepton) number and
S the spin, respectively. Hence all Standard Model particles have R = +1, whereas R = —1
for all SUSY particles. It is worth emphasising that the conservation of R parity is an ad-hoc
assumption. The only strict limitation comes from the proton lifetime: non-conservation of both
B and L leads to a rapid proton decay. R-parity conservation has serious consequences in SUSY
phenomenology in colliders: the SUSY particles are produced in pairs and, most importantly,
the lightest supersymmetric particle (LSP) is absolutely stable and weakly interacting, thus
providing the characteristic high transverse missing momentum (E%ﬂss) in SUSY events at
colliders. Here we highlight two RPV models: the bilinear RPV (bRPV) and the p-from-v
supersymmetric standard model (urSSM), which —as we shall see— both reproduce correctly
the neutrino physics observations.

The structure of this paper is as follows. Section 2 is dedicated to bRPV SUSY models: their
connection with neutrino physics is explained in Section 2.1, its phenomenology at the LHC
is provided in Section 2.2, while Section 2.3 presents the current constraints from the ATLAS
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experiment. The p-from-v supersymmetric standard model is discussed in Section 3. After a
brief review of the theoretical motivation for urSSM, descriptions of its possible signatures at
the LHC based on multileptons and displaced vertices follow in Section 3.1. Sections 3.2 and 3.3
focus on Higgs decays and unusual Z/W boson decays in the context of uvSSM, respectively.
Aspects of RPV SUSY linked to dark matter are discussed in Section 4. The paper concludes
with a summary and an outlook in Section 5.

2. Bilinear R-parity breaking

R-parity conservation (RPC) has several consequences such as the stability of the LSP, which
is a weakly interacting massive particle (WIMP) and consequently a candidate for dark matter
(DM) [2]. Being a WIMP, once produced at the LHC, it will escape detection, resulting in
large missing transverse momentum, E%ﬁss. Providing a DM candidate is one of the strongest
arguments in favour of RPC SUSY, nonetheless RPV models do exist that can explain DM
through, for instance, very light gravitinos [5-11], axions [10,12] or axinos [10,13,14]. There is
no fundamental reason for R parity to be conserved thus lepton and baryon number violating
renormalisable terms may appear in the supersymmetric potential in the following way:

where the couplings A, A’ and A" are 3 x 3 Yukawa matrices —i, j, k being flavour indexes—, ¢;
are parameters with units of mass and Q,U, D, L, E, H,, H; refer to supermultiplets. The first
three types of terms lead to lepton number violation, while the baryon number is violated by
the fourth one.

As long as the breaking of R parity is spontaneous, only bilinear terms arise in the effective
theory below the RPV scale, thus rendering bilinear R-parity violation a theoretically attractive
scenario. Moreover, the bilinear model provides a theoretically self-consistent scheme in the
sense that trilinear RPV implies, by renormalisation group effects, that also bilinear RPV is
present, but not conversely [15].

In other words, the simplest way to break R parity is to add bilinear terms to the MSSM
potential. Besides that, additional bilinear soft SUSY breaking terms are introduced, which
include small vacuum expectation values for the sneutrinos. The relevant superpotential W and
the soft supersymmetry breaking terms Vg, which include bilinear R-parity violation, would
then be [16]

wWw = WMSSM—FGZ'EZ'E[U (2)
Vit = VopPS™ — By, L;H,, (3)

where the B; have units of mass. In fact, if SUSY was not broken, the bilinear terms could
be rotated away and be converted into trilinear terms, however the presence of the soft SUSY
breaking terms Bye; L; H,, gives bBRPV a physical meaning [16].

There are nine new parameters introduced in this model: ¢;, B; and v;, the latter being the
sneutrino vacuum expectation values (VEVs). However, after electroweak symmetry breaking
and taking into account constraints from neutrino experiment results, only one free parameter
remains in the model, which is set to be of the same order as the others.

2.1. Connection with neutrino physics

Sneutrino VEVs introduce a mixing between neutrinos and neutralinos, leading to a see-saw
mechanism that gives mass to one neutrino mass scale at tree level. The second neutrino mass
scale is induced by loop effects [17,18]. The same VEVs are also involved in the decay of the
LSP, which in this case is the lightest neutralino. This implies a relation between neutrino
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physics and some features of the LSP modes. An example of such a connection is given by the
relation [17]

? BR(XY = p*W¥F)  BR({ = p*qq)

%
~ - 4
BR(YY — m=W¥) ~ BR(Y} — 7%qq) @

tan2 gatm = Ai
-

where 0,4 1S the atmospheric neutrino mixing angle and the “alignment” parameters A; are
defined as A; = pv; + vqe;, with vy the VEV of HY. This relation between RPV and neutrino
physics allows setting bounds on bRPV parameters from results of neutrino experiment and
astrophysical data [19]. In the opposite direction, a possible positive signal observed in colliders
may lead to the determination of some of the bRPV phenomenological properties, which in turn
can constrain neutrino-physics parameters [20].

2.2. Phenomenology at the LHC

In the specific bilinear R-parity violating model discussed here, the LSP is the lightest neutralino,
%Y [21]. The bRPV terms are embedded in the minimal Supergravity (mSUGRA) model, which
imposes some restrictions which reduce the large number of parameters of the MSSM. The
number of parameters in mSUGRA is reduced to five, namely my, the scalar mass; my;, the
gaugino mass; Ay, the trilinear scalar coupling; tan 8 = v, /v, the ratio of the Higgs VEVs; and
sgn (i, the sign of the higgsino mass parameter.

The six bRPV parameters for each mSUGRA point are determined by the SPheno [22]
spectrum calculator. SPheno uses as input the mSUGRA parameters and the neutrino physics
constraints, and delivers as output the bRPV parameters (together with the mass spectra and
the decay modes) compatible with these constraints. Once those quantities are calculated for
a given set of bRPV parameters within an mSUGRA benchmark point, they can subsequently
passed to an event generator and produce collision events at the LHC.

It is stressed that the sparticle spectrum for bRPV-mSUGRA is —within theoretical
uncertainties— the same as in RPC mSUGRA; it is the LSP decay modes and its lifetime
that depend on the bRPV parameters. Typical Y| decay modes are shown in Fig. 1 for a model
where the parameters tan 8 = 30, ¢ > 0 and Ag = —2myg have been chosen so as to obtain a
125-GeV Higgs boson in agreement with the ATLAS [23] and CMS [24] discovery. The neutralino
decays are dominated by leptonic (e, i) or 7 channels, making lepton-based searches ideal for
constraining this model. The decay to a muon and a hadronically-decaying W has been studied
in detail and it has been shown that it may lead to the measurement of the ¥ mass through the
reconstruction of the Y! — uq'q peak in the pjj invariant mass [20,25,26]. Furthermore the fact
that in the low-my /5 high-mg region the 1Y is slightly long lived, as evident from Fig. 2, opens
up the possibility to use searches for displaced vertices [27,28] in order to probe this model at
the LHC [29]. Lastly, the X} decays to one or two neutrinos give rise to a moderately high Elfniss,
thus rendering some E%liss—based analyses pertinent to bRPV, as we shall see in the next section.

So far we have discussed the bRPV in the context of supergravity models. If the bRPV terms
are introduced to anomaly-mediated SUSY breaking (AMSB) instead, the Y} LSP decay modes
do not change, whereas the wino-like neutralino (as opposed to the bino-like in mSUGRA) is
characterised by stronger interactions, hence it is easier to be produced at LHC. The mass
degeneracy of the Y} and the )Zic makes the )ﬁc long lived, decaying dominantly through RPV
couplings to £¢¢, T¢(, £bb, Tbb [30]. In other words, the common feature of bRPV phenomenology
is the presence of delayed decays leading to interesting signatures at the LHC.

2.3. Constraints from ATLAS
As mentioned above, thanks to the abundant neutrino production from the LSP decay, bRPV
events at the LHC are expected to feature relatively (when compared to Standard Model
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Figure 2. Proper decay length ¢7 in millimetres for the
Figure 1. {! decay modes for a lightest neutralino LSP in bRPV-mSUGRA parameter
bRPV-mSUGRA point. plane (mg, my/y) and tan 8 = 30, p > 0 and Ay =
—2m0.

processes) high missing transverse momentum. High lepton/7 multiplicity is also expected
from the LSP decays and from upstream lepton production in the SUSY cascade decay, if strong
production is considered. Both features are exploited when looking for a signal of the bRPV-
mSUGRA model, as demonstrated in Ref. [25], where a first detailed Monte-Carlo-based study
on the observability of the ¥ — ¢’ at the LHC has been carried out. The very first bounds set
on a bilinear RPV model in colliders were provided by an inclusive search for high EI{}iSS, three
or four jets and one muon at /s = 7 TeV and ~ 1 fb~! of ATLAS data [26,31]. The X! decay
to muonic channels is enhanced when compared to electrons, as shown in Fig. 1, hence muon
channels yield stronger limits than their electron counterparts. A slight loss of sensitivity in the
high-mg low-my s, region was observed due to the large LSP lifetime, which causes signal muons
to be rejected by the cosmic-muon veto, i.e. the cut on muons with high impact parameter.
Aforesaid limits were extended further by an analysis with 5 fb~! based on events with high jet
multiplicity (at least seven jets), large EMs5 and exactly one lepton (muon or electron) [32,33].

Further constraints on bRPV-SUGRA for parameters tuned to attain a mass of the lightest
Higgs equal to 125 GeV have been set recently by ATLAS [34-36] with the full data set of
~ 20 fb~! recorded at /s = 7 TeV. The LSP decays to taus have been used as a handle to
constrain the model in an analysis combining event selections with at least one tau, two taus or
one tau and a lepton (e or ) in conjunction with large EMis [35]. The observed limits can be
consulted in the left panel of Fig. 3. The bounds set by an analysis seeking two same-sign leptons
or three b-jets and jets [34] are significantly extended with respect to the 7-analysis. As shown in
the right panel of Fig. 3, values of m, j, are excluded between 200 GeV and 490 GeV at 95% CL
for my < 2.1 TeV. Interestingly enough, in both analyses, signal points with my/,, < 200 GeV
were not considered because the lepton acceptance was significantly reduced due to the increased
LSP lifetime in that region, as seen previously in Fig. 2. Slightly stringent limits have been set
by ATLAS very recently by requiring one hard lepton, jets and large EXsS [36].

The fact that in a large part of the parameter space the ) LSP decays to a Z boson
and a neutrino implies that searches for events containing Z and large E%ﬁss [37, 38] should
be pertinent to explore bRPV as well. In fact this LSP decay —as much as decays to 7W
and puW— is considerable not only when bRPV is embedded in mSUGRA, but also when
bRPV is introduced to other well-motivated SUSY scenarios such as “natural” SUSY [39]
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and pMSSM [40]. Ongoing work continues in interpreting the results of the same-sign lepton
analysis [34] in natural pMSSM [41] with bRPV [42].

Bilinear RPV Model, A =-2m,, tan$=30, p>0 MSUGRA/CMSSM: tan(8)=30, A_=-2m,, 1 > 0, bRPV
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Figure 3. Expected and observed 95% CL exclusion limits in the bilinear R-parity violating
model obtained by a 7 + EIS analysis (left) [35] and by the two-same-sign-lepton analysis
(right) [34]. The latter results are obtained by combining the electron and muon channels. The
band around the median expected limit shows the +1¢ variations on the median expected limit,
including all uncertainties except theoretical uncertainties on the signal. The dotted lines around
the observed limit indicate the sensitivity to +10 variations on these theoretical uncertainties.

3. The p-from-v supersymmetric standard model (urSSM)
The purSSM [43,44] is a supersymmetric standard model that solves the p problem [45] of
the minimal supersymmetric standard model (MSSM) using the R-parity breaking couplings
between the right-handed neutrino superfields and the Higgs bosons in the superpotential,
)\iﬁfﬁdﬁu. The p term is generated spontaneously through sneutrino vacuum expectation
values, p = A\(7f), once the electroweak symmetry is broken, without introducing an extra
singlet superfield as in the case of the next-to-MSSM (NMSSM) [46]. The complete prSSM

superpotential is given by

W = € (Yu,, H Q5 05 + Yy, HY Q0 dS + Yo, Hy LY &
5
+ Y, HE LY 05 — N of HYHD) + %mjkaf e ®)
The couplings kU5 Vj U forbid a global U (1) symmetry avoiding the existence of a Goldstone
boson, and also contribute to spontaneously generate Majorana masses for neutrinos at the
electroweak scale. The latter feature is unlike the bilinear RPV model, where, as mentioned in
Section 2.1, only one mass is generated at the tree level and loop corrections are necessary to
generate at least a second mass and a neutrino mixing matrix compatible with experiments. In
the bilinear model, the p-like problem [47] is augmented by the presence of three bilinear terms.

The purSSM phenomenology is largely defined by the parameters

)‘7 Ri, VC? tanﬁv Mla A)\a An, (6)
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where A = v/3\ it the singlet-doublet mixing parameter (if universal \; are assumed),  is the
common K;jk, Ay, Ay are the soft SUSY-breaking parameters and M is the U(1) mass scale.

In the prSSM, as a consequence of R-parity violation, all neutral fermions mix together
into ten neutralinos, Y, and five charginos, Y. Since the three lightest neutralinos are the
left-handed neutrinos, the “true” LSP would be the YJ. Likewise the three lightest charginos
)Zf coincide with the three charged leptons. Similarly, all scalars mix into eight C'P-even,
SY and seven C'P-odd neutral Higgs bosons, PV, mass eigenstates. The three lighter neutral
scalars, S?,i = 1,2,3, are in fact naturally light singlet-like states, leaving the fourth one, Sff,
to play the role of the discovered SM-Higgs-like scalar. Charged scalars, on the other hand,
form seven mass eigenstates, Py. Analyses of the yvSSM, with attention to the neutrino and
LHC phenomenology have been addressed in Refs. [44,48]. Other analyses concerning cosmology
such as gravitino dark matter and electroweak baryogenesis can be found in Refs. [49-51] and
in Ref. [52], respectively. In conclusion, urSSM is a well-motivated SUSY model with enriched
phenomenology and notable signatures, which definitely deserve rigorous analyses by the LHC
experiments. Its enlarged Higgs sector can easily accommodate the observed 125 GeV Higgs
boson [23,24].

3.1. Signatures at LHC

Here a collider analysis together with detector simulation of an intriguing signal in the prSSM
featuring non-prompt multileptons at the LHC, arising from the beyond SM decay of a 125 GeV
scalar into a pair of lightest neutralinos, X{, is presented [53]. Since R parity is broken, each ¥}
decays into a scalar/pseudoscalar (h/P) and a neutrino, with the h/P further driven to decay
into 7777, giving rise to a 47 final state, as shown in Fig. 4. The small R-parity breaking
coupling of Y9 renders it long lived, yet it decays inside the inner tracker, thereby yielding
clean detectable signatures: (i) high lepton multiplicity; and (ii) charged tracks originating from
displaced vertices (DVs).

Figure 4. The pvSSM decay chain studied
in Ref. [53]. The Higgs boson is produced
through gluon fusion and has a mass of 125 GeV.
The neutralino X9 is long-lived and gives rise to
displaced 7 leptons.

The prSSM is characterised by the production of several high-pr leptons [53]. Electrons and
muons are produced through the leptonic 7 decays, yet muon pairs can appear directly through
hi/P; decays as well. With the chosen decay mode, the 7 multiplicity is considerable even though
the 7-identification efficiency is much lower (~ 50%) when compared to that of electrons and
muons (2 95%). Occasionally highly collimated QCD jets can fake hadronic 7 leptons, a4,
and, as a result, 7 multiplicity may exceed the expected number of four. This faking however
disappears with a higher pr cut, which should also be sufficient to provide a single-lepton trigger
for the analysis.

Apart from the requirement of at least three or four leptons (including taus), a high value of
Emiss and /or of the scalar sum of reconstructed objects: leptons, jets and/or EXisS is needed [54].
For the chosen signal many neutrinos (> 6) appearing in the final state from Y and from 7 decay
give rise to moderately high —when compared to signals from RPC supersymmetry— missing
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transverse energy, E1"%, as depicted in Fig. 5. Besides E%ﬁss, the scalar sum of the pp of all
reconstructed leptons, H&, is also large in such events, as shown in Fig. 6. Alternatively, the
sum of EITniss and H ZT can be deployed for further background rejection. These observables can
provide additional handles when selecting events with many leptons. In addition, the invariant
masses, my+y— and maqp+o,— may prove useful for the purpose of signal distinction.
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In the benchmark scenario under study, the Y{ is characterised by a proper lifetime of the
order of T R 10~Y s, which corresponds to a proper decay length of TR = 30 cm. This
feature —quantified in Fig. 7, were the decay-length distribution is plotted— gives rise to
displaced vertices. In a significant percentage of events, the )22 would decay inside the inner

tracker of the LHC experiments, e.g. in 28% of events it would decay within 30 cm and in 44%
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events within 1 m. Therefore, the urSSM signal events would be characterised by displaced
7 leptons plus neutrinos. This distinctive signature opens up the possibility to exploit current
or future variations of analyses carried out by ATLAS and CMS looking for a displaced muon
and tracks [27,28] or searching for displaced dileptons [28,55], dijets [56] or muon jets [57] arising
in Higgs decays to pairs of long-lived invisible particles.

The kinematics of the DVs and their products in the chosen prSSM benchmark point have
been studied thoroughly in Ref. [53]. The spacial distribution of DVs shows that an appreciable
fraction of them falls in the inner-tracker volume of the LHC experiments, i.e. ppy < 1 m and
|zpv| < 2.5 m, thus DVs arising in the urSSM should be detectable at LHC, in principle, either
with existing analyses [27,28,55-57] or via variations of those looking for displaced taus and
E%nss. The average X} boost, on the other hand, as expressed by v, where 3 is X} velocity
over ¢ and 7 the Lorentz factor, is comparable to the signal analysed in an ATLAS related
search for a muon and tracks originating from DVs [27]. The boost affects the efficiency with
which such a DV can be reconstructed, since high ¥} boost leads to collimated tracks difficult
to differentiate from primary vertices. In Fig. 8, the correlation between the number of charged
tracks in each DV, Ny, and their invariant mass, mpy, is shown. It has been demonstrated [27]
that a selection of high- Vi, and high-mpy efficiently suppresses background from long-lived SM
particles (B mesons, kaons). The modulation observed in Ny, is due to the one-prong or three-
prong hadronic 7 decays.

3.2. Higgs decays

As pointed out earlier, urSSM can easily predict a Higgs boson of a mass compatible with the
observed one [23,24]. As becomes evident from Fig. 9 a 125-GeV Higgs boson, SY, can be
accommodated within a wide range of tan § and X values [58].
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the urSSM. The horizontal lines represent

the experimentally measured masses of the Figure 10. Measured signal strengths with

Higgs, s fmd Z boson, mz. In the lo uncertainties obtained from the ATLAS and
inset the region of tan 4 < 5 is shown for CMS experiments together with the correspond-
A< 0.7 [58]. ing values of Higgs mass [58].

This scalar would produce new states through two-body decays as long as these states are
kinematically allowed. Decays to S?S?, PiOPjQ, )Z?Jrg)}? 3 with 4,7 = 1,2,3 have been studied
in detail in Ref. [58]. The question is whether these new decay widths respect the current
measurements of the Higgs decays signal strength pxx. It is shown that the final states are
dominated by a combination of prompt or displaced leptons, taus, jets and photons plus Ep"*°
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due to neutrinos. When the expected productions rates for these new signatures are compared
with the current pxx measurements listed in Fig. 10, it is found that they are compatible with
the measured Higgs signal strengths px x under the following conditions.:

0.01 <A <0.1: All pxx remain within 20 of CMS measurements for 2.5 < tan 5 < 3.9.
0.1 <X <0.7: Only (invisible) S decays to YV +3)~<§? 3 Temain viable in the whole range of A.
A > 0.1: For decays to pair of binos, all uxx are within 20 for 2.4 < tan 8 < 3.8.

Hence there is plenty of room for new Higgs decays within the context of the “u from v”
supersymmetric standard model.

3.3. New decays to Z W

In addition to the new SM-Higgs-like decays, uSSM also introduces novel on-shell decays of the
Z and W* gauge bosons [59]. These modes are typically encountered in regions of the parameter
space populated with light singlet-like scalars, pseudoscalars and neutralinos. The complete
spectrum of possible final states and their origin is presented in Table 1. The delayed “objects”
occur in delayed decays of the neutralino, whereas the (short-lived) scalars and pseudoscalars
deliver prompt products.

Table 1. Final states from non-standard Z and W decays with their respective origins [59].
The notation applied is x : e, u, 7,7, q and P, D stand for prompt and delayed, respectively.

Z decay W+ decay

22PozP + Errlgiss (Via >~Ci+3>2j+3)

22F2zF (via SYPY) 0P /7P + 2Pzl + B (via X Xj+5)
it

These rare new decays are strongly constrained by the measurements of the Z and W total
widths. Signatures with 7-leptons and/or b-jets and with displaced objects would be preferred
when probing these decays in order to suppress the huge SM background. Their low production
rate, e.g. BR ~ O(107°) for the Z, necessitates the high statistics that will become available
when upcoming collides such as the GigaZ and TeraZ modes of the Linear Collider and TLEP,
respectively, will be in operation [59].

4. Implications for dark matter
We address here the issue of (not necessarily cold) dark matter in SUSY models with R-parity
violation. It has been shown that these seemingly incompatible concepts can be reconciled in
bRPV models with a gravitino [5-8] or an axino [13] LSP with a lifetime exceeding the age of
the Universe. In both cases, RPV is induced by bilinear terms in the superpotential that can
also explain current measurements on neutrino masses and mixings without invoking any GUT-
scale physics. Decays of the next-to-lightest superparticle occur rapidly via RPV interactions,
thus they do not disturb the Big-Bang nucleosynthesis, unlike the R-parity conserving case [60].
Decays of the NLSP into the gravitino and Standard Model particles do not contribute to
the gravitino relic density in scenarios with broken R parity. This is because decay processes
involving a gravitino in the final state are suppressed compared to R-parity breaking decays
unless the amount of R-parity violation is extremely small.

Interestingly, gravitino decays may produce monochromatic photons via G — v, opening
therefore the possibility to test this scenario with astrophysical searches, as we will see below.
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Requiring the model parameters to correctly account for observed neutrino oscillation parameters
implies that expected rates for y-ray lines produced by gravitino decays of mass above a few GeV
would be confronted with the Fermi-LAT satellite observations, leading to an upper bound on
the gravitino DM mass. For instance, the bRPV parameter region allowed by 7-ray line searches,
dark matter relic abundance, and neutrino oscillation data, has been determined obtaining a limit
on the gravitino mass mz < 1—10 GeV corresponding to a relatively low reheat temperature [7].
The allowed region in the gravitino mass versus gravitino lifetime plane is shown in Fig. 11. The
yellow region is excluded by v-ray line searches: Fermi and EGRET constraints are above and
below 1 GeV, respectively.
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Figure 11. Allowed gravitino mass- Gravitino Mass > (GeV)

versus-lifetime region (grey color) con-

sistent with neutrino oscillation data and
astrophysical bounds on v-ray lines from
dark matter decay for a bilinear RPV
model.  The lower and upper black
lines correspond to my; = 240 and
3000 GeV, respectively. Adapted from
Ref. [7].

Figure 12. Constraints on lifetime versus
mass for decaying gravitino DM in the urSSM.
Diagonal grey lines (shaded band) denote allowed
(favoured) photino-neutrino mixing parameters for
the prvSSM, The blue shaded area is excluded
by the limits set by 5-year Fermi-LAT data.
The upper bounds set by several other ~-ray

observations are also overlaid. From [51].

Evidence on the four-year Fermi data that have found excess of a 130 GeV gamma-ray line
from the Galactic Centre (GC) [61] have been studied in the framework of R-parity breaking
SUSY. A decaying axino DM scenario based on the SUSY KSVZ axion model with the bilinear R-
parity violation explains the Fermi 130-GeV gamma-ray line excess from the GC while satisfying
other cosmological constraints [14]. On the other hand, gravitino dark matter with trilinear
RPV —in particular models with the LLE RPV coupling— can account for the gamma-ray
line, since there is no overproduction of anti-proton flux, while being consistent with big-bang
nucleosynthesis and thermal leptogenesis [11].

Measurements of the cosmic-ray antiproton flux by the PAMELA experiment have been
used recently to constrain the (decaying) gravitino mass and lifetime in the channels Zv, W/{
and hv [9]. Subsequently upper limits have been set on the size of the R-parity violating
coupling in the range of 10% to 8 x 10'3. These limits turn out to be more stringent than
those coming from contributions to neutrino masses or from the baryon asymmetry in the early
Universe. Combining them with lower limits from big-bang nucleosynthesis constraints on the
NLSP lifetime allows narrowing down the available parameter space for gravitino DM with
bRPV.

Recent analyses of combined spectra of multiple galaxy clusters and the Andromeda galaxy
from the XMM-Newton telescope, have revealed a tentative line with the central energy of
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3.5 keV [62]. First and foremost, any long lived particle that produces enough number of
photons should be a good candidate as a source of X-rays. Among the various theoretical
scenarios attempting to explain it, RPV SUSY with an LSP decaying to photon and a neutrino
is a possibility. In bilinear RPV it was found that a warm-dark-matter axino with a mass of
mg =~ 7 keV can have the proper lifetime and relic density to account for the observed X-ray
emission line through its decay & — v [63]. Alternatively the line may be due to annihilating
DM with mg =~ 3.5 keV. Apart from the axino, other possible candidates include a gravitino, a
bino, or a hidden sector photino as decaying DM leading to such a signal studied in the context
of other-than-bilinear RPV SUSY scenarios [64].

Such gravitino DM is also proposed in the context of urSSM with profound prospects for
detecting 7 rays from their decay [49]. In studies on the prospects of the Fermi-LAT telescope
to detect such monochromatic lines in five years of observations of the most massive nearby
extragalactic objects, it was found that a gravitino with a mass range of 0.6 — 2 GeV, and
with a lifetime range of about 3 x 10?7 — 2 x 10?® s should be detectable with a signal-to-noise
ratio larger than three [50]. After confronting the actual v-ray flux data, limits on the model
parameters have been set [50,51]. It was shown that gravitino masses larger than about 4 GeV
are already excluded in the p/SSM by Fermi-LAT data of the galactic halo [50]. The constraints
on G lifetime versus mass obtained by the 5-year Fermi-LAT and other y-ray observations, as a
consequence of the limits on line emission, are summarised in Fig. 12. If the photino-neutrino
mixing parameter |Us,| from the 7 x 7 neutralino mixing matrix is between 1071¢ and 107'2,
the correct neutrino masses are reproduced in urSSM. Values of the gravitino mass larger than
5 GeV, are disfavoured, or lifetimes smaller than ~ 10?® s, are excluded at 95% CL as DM
candidates.

R-parity breaking couplings can be sufficiently large to lead to interesting expectations for
collider phenomenology. The neutralino NLSP, depending on the RPV model considered, may
decay into [6,65]

X] — WHEF, X — G,
X — vrEeF, N — G2, (7)
)Z(f — vy, 92(1) — Gh.

Such decays may be probed at the LHC via inclusive channels characterised by leptons,
many jets, large E%iss and/or photons or exclusive channels involving the reconstruction of a
Z or a h from its decay products. The cases where the NLSP is long-lived yet with a decay
length comparable to the dimensions of an LHC experiment are particularly interesting, as they
give rise to displaced tracks/leptons and non-pointing photons. The possibility to measure the
neutralino decay length provides an extra handle to constrain the underlying SUSY model.
Nevertheless determining whether R parity is conserved or broken may not be trivial since the
DM particles themselves, whether absolutely stable or quasi-stable, cannot be detected directly
in collider experiments. To this effect, an interplay between collider and astroparticle physics is
necessary to pin down the dark matter properties and the related theoretical-model parameters.

5. Summary and outlook
The hitherto null results of searches for supersymmetry in conventional channels calls for a
more systematic and thorough consideration of non-standard SUSY theoretical scenarios and
experimental techniques. To this effect, scenarios involving violations of R parity and/or
(meta)stable particles arise as interesting alternatives.

R-parity violating supersymmetry may reproduce correctly the measured neutrino physics
parameters. Moreover its enriched mass spectrum and R-parity breaking decays can lead to
novel signals at colliders, among which very few possibilities have been explored so far. In
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particular, searches for displaced objects at the LHC offer an attractive possibility as well as
the prompt multilepton analyses. The former suffer from less background sources from SM
processes when compared to prompt-object searches. More sophisticated searches are expected
by ATLAS, CMS and LHCb in the near future during LHC Run II, where energies of 13— 14 TeV
will be probed.
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