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Centro de F́ısica Teórica de Part́ıculas (CFTP), Instituto Superior Técnico - University of
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Abstract. We study the possibility that neutrino masses (mν) are proportional to small
supersymmetry (SUSY) breaking effects that take place within the sector responsible for
generating mν at the quantum level. We specifically consider the case in which lepton number
(L-number) breaking is independent of SUSY breaking (���SUSY), so that this connection can
be seen to be a consequence of the SUSY non-renormalisation theorem. We show that the
simplest one-loop models realising this idea generate LLHH operators suppressed by at least
µmsoft/M

3 or m2
soft/M

3, where msoft is the scale of soft-���SUSY effects involving the seesaw
mediators, which possess superpotential masses of order M (the L-number breaking scale). We
exemplify this possibility by constructing one such model based on a one-loop type-II seesaw.
This contribution summarises the work published in [1].

1. Introduction
The idea that neutrino masses (mν) may owe part of their smallness to small supersymmetry
(SUSY) breaking effects was put forward in [2], where it relied on the observation that the R-
parity conserving minimal SUSY Standard Model (MSSM) can generate non-vanishing neutrino
masses if one takes into account hard SUSY breaking (����SUSY) terms involving slepton doublets
and Higgses, as for instance

msoft

MX
(L̃Hu)2 ⊂ 1

M2
X

∫
d2θX̂(L̂Ĥu)2 , (1)

where MX is the underlying scale mediating ����SUSY (〈X̂〉 ∼ FXθ
2) to the visible sector, and

msoft ∼ FX/MX is the soft-����SUSY scale. Although non-standard ����SUSY terms are typically
neglected in phenomenological analysis due to their expected smallness, this is a feature that
could conceivably be responsible for mν/v � 1. For example, if ����SUSY generates (L̃Hu)2, then
LLHuHu arises at the one-loop level via a gaugino-slepton loop and is suppressed by msoft/MX .

A shortcoming of the idea presented in the previous paragraph is that it does not
explain why the more fundamental model is able to generate the (s)lepton number violating

superfield operator (superoperator) X̂(L̂Ĥu)2 while being unable to generate SUSY conserving
superoperators that, if generated, would expectedly provide dominant contributions to mν . For
example, given X̂(L̂Ĥu)2 ⊂ Weff one would arguably expect that a generic model would also
generate

1

MX
LLHuHu ⊂

1

MX

∫
d2θ(L̂Ĥu)2 . (2)
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A possible strategy to fix this shortcoming is to consider that X̂ carries L̂-number, so that
X̂(L̂Ĥu)2 is symmetric, and is thus allowed, while (L̂Ĥu)2 is forbidden. This kind of strategy
in which the ����SUSY sector is postulated to share a visible sector symmetry is followed in [3]. A
different strategy is to postulate a visible sector symmetry that forbids chiral superoperators
while allowing non-chiral. Since non-chiral superoperators contribute to the effective action
as D-terms, their contribution to neutrino masses is necessarily proportional to ����SUSY. For
example, the authors of [4] consider an extra U(1) symmetry that allows

msoft

MX
LH†dN ⊂

1

M2
X

∫
d4θX̂†L̂Ĥ†dN̂ (3)

but forbids the non-suppressed LHuN ⊂
∫
d2θL̂ĤuN̂ .

In the aforementioned works the connection between ����SUSY and mν results from making
����SUSY the unique provider of:

i) L-number violating couplings suitable for a radiative seesaw with just the superfield content
of the MSSM [2] or for a canonical type-I seesaw [3]; or

ii) couplings for Dirac neutrino masses [3, 4].

An alternative arises when one considers models in which neutrino masses are radiatively
generated. In such models, the connection between ����SUSY and mν is a consequence of the
SUSY non-renormalisation theorem, so that one may have all the required couplings at the
SUSY level while the radiative structure of a SUSY QFT precludes the generation of neutrino
masses. Then, one may have L-number breaking at the superpotential level, i.e. independently
of ����SUSY, and neutrino masses will still be proportional to ����SUSY. This dependence on ����SUSY
is not entirely obvious in component fields calculations. To illustrate what we mean, consider
the trilinear R-parity violation contribution to neutrino masses [5], which is generated at the
one-loop level. It takes the schematic form

mν

v2
∼ A− µ cξ tβ

M2
, (4)

where M is the loop mass scale, µ cξ is the effective µ-term and A stands for holomorphic soft-
����SUSY trilinears. From this expression, one may erroneously think that the ∝ µ/M2 contribution
is a SUSY conserving one, since µ is a superpotential mass term. However, a closer inspection
reveals that the µ-term contribution comes from the vacuum expectation value (VEV) of an

F -term, specifically 〈F †Hd〉 = µ〈Hu〉, and is thus intrinsically ����SUSY. This is not that surprising

since in the SUSY limit one has 〈H〉 = 0 and therefore 〈Hu,d〉 = vu,d are proportional to
����SUSY. This suggests that ����SUSY contributions can be classified with respect to (w.r.t.) their
involvement in electroweak symmetry breaking (EWSB) as follows: ����SUSYEWSB contributions
are those which involve ����SUSY VEVs of the form

〈F †〉 =
∑

H

µH〈H〉+
∑

H

λH〈HH ′〉 6= 0 or 〈D〉 = g
∑

H

〈H† ⊗H H〉 6= 0 , (5)

where Hs are fields whose VEVs break the electroweak symmetry (EWS); while ����SUSYEWS

contributions correspond to those in which at least one ����SUSY VEV is unrelated to EWSB.

In this work, we will start by analysing the space of radiative seesaw models w.r.t. their
dependence on ����SUSY. In order to do this in the most efficient manner, we will use supergraph
techniques1 and incorporate the ����SUSY effects by means of considering couplings to external

1 A detailed introduction to supergraph techniques can be found in chapter 6 of [6].
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����SUSY spurions [7]. This will allow one to see the ����SUSYEWS contributions to neutrino masses
as small ����SUSY effects upon a fundamentally SUSY topology.

Although L-number violation can possibly arise from����SUSY, i.e. from the VEV of an auxiliary
rather than scalar field, in here we assume that they are broken separately so that the non-
renormalisation theorem is the only bridge between mν and ����SUSY. We thus assume that the
radiative seesaw models are realised in the superpotential at a L-number breaking scale M that
is higher than the scale of soft-����SUSY effects involving the seesaw mediators. We will furthermore
restrict ourselves to models with the low energy Higgs sector of the MSSM.

As we will see in section 2, contributions to neutrino mass operators whose dependence on
����SUSY arises entirely by means of����SUSY sources involved in EWSB are expected to be suppressed
by some power of µ/M or be of dimension higher than 5 and involve gauge couplings. Thus, in
a generic radiative seesaw model one expects mν to have the schematic dependence

mν

v2
∼ µ

M2
⊕ g2v2

M3
⊕ msoft

M2
, (6)

where msoft/M
2 corresponds to conceivable ����SUSYEWS contributions. Exploiting the power of

the SUSY non-renormalisation in the space of radiative seesaw models, we then investigate if
models exist in which the pure-����SUSYEWSB contribution either vanishes or is subleading w.r.t.
the contribution from ����SUSYEWS. Since in such a case

mLO
ν

v2
∼ msoft

M2
, (7)

where msoft is the scale of soft-����SUSY effects involving the mediators of the radiative seesaw,
models in which the leading contribution comes from soft-����SUSYEWS offer the possibility of
explaining the smallness of mν with M in the vicinity of the TeV scale provided msoft/M � 1.
It should be noted that the smallness of msoft is not constrained by lower-limits on the mass
of new particles because the fields upon which these msoft-effects are felt possess superpotential
masses of order M . We catalogue one-loop topologies for such models in section 3. An explicit
model example is presented in section 4 and consists of a one-loop type-II seesaw whose leading
pure-����SUSYEWSB contribution is of dimension-7 – comprising contributions ∝ µ/M and ∝ g2

–, whereas the leading contribution from ����SUSYEWS is of dimension-5 and has the dimensionful
dependence µmsoft/M

3 or m2
soft/M

3, the latter corresponding to pure-����SUSYEWS contributions.

2. Radiative seesaws in SUSY: understanding the different ����SUSY contributions
In order to understand the ����SUSY structure of radiatively generated neutrino mass operators
(OPν), it is first convenient to notice that for every OP ∈ OPν there exists a superoperator

ÔP ∈ ÔPν such that OP ⊂
∫
d4θ ÔP. Then, since any OP ∈ OPν is of the form OP =

LL⊗Higgses, one arrives at the conclusion that ÔP ∈ ÔPν belongs to one of two classes:

D2(L̂L̂Ĥn)⊗ Â or L̂L̂⊗ B̂ , (8)

with
∫
d4θÂ ⊃ Higgses ,

∫
d2θ̄B̂ ⊃ Higgses ,

and where n = 0, 1, ... stands for conceivable insertions of superfields that yield Higgses at θ = 0
(a limit hereafter denoted by |). Now, if we assume that only scalar and gauge vector superfields
exist, we can write

Â ∈ â⊗
{
Ĥ, Ĥ†, D2Ẑ, D̄2Ẑ†, D2D̄2V̂

}n
,

B̂ ∈ b̂† ⊗
{
Ĥ, Ĥ†, D2Ẑ, D̄2Ẑ†, D2D̄2V̂

}n
,

(9)
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where n = 0, 1, ... stands for arbitrary insertions of superfields within the given set (denoted

by curly braces), though constrained by internal symmetries. â and V̂ (mod Ĥ†, Ĥ) (b̂† and

Ẑ† (mod Ĥ†)) are real (anti-chiral) scalar superfields whose D (F ) component is a constant or a
product of Higgses2. We show in figure 1 characteristic examples of class A and B superoperators.

L̂

L̂

ÔP
D2

. . .
∫
d4θD2(L̂L̂)ÔP

L̂

Ĥ

ÔP
D̄2D2

. . .

L̂

∫
d4θL̂Ĥ ÔP[L̂]

L̂

L̂

ÔP
D̄2D2

. . .
∫
d4θL̂L̂ ÔP

L̂

L̂ . . .

Figure 1. Characteristic examples of supergraph topologies for radiative seesaws: type-II
without a chirality flip (class A), type-I and -III, type-II with a chirality flip and 1PI seesaw,
respectively.

2.1. Pure-����SUSYEWSB contributions
Pure-����SUSYEWSB contributions are generated by superoperators containing superfields whose
auxiliary fields yield Higgses upon being integrated out. We have two possibilities:

D̄2D2V̂
∣∣∣ = D ⊃ gH† ⊗H , (10)

where V̂ is the gauge vector superfield of any symmetry under which Higgses are charged; and

D̄2Ẑ†
∣∣∣ = F †Z ⊃ µH or λH ⊗H ′ , (11)

where Ẑ† is any anti-chiral scalar superfield that has a bilinear with an Higgs or a trilinear with
two Higgses. For class B superoperators (cf. Eq. (9)), b̂† is thus Ẑ† or the anti-chiral projection

of V̂ (D2V̂ ), while, for class A, â is V̂ or the real product of b̂ (b̂†b̂).
Now, under the phenomenologically reasonable assumption of a superpotential mass term for

Ẑ, the contribution of a trilinear with two Higgses adds up to an overall derivative term of the
form �(HH ′). Moreover,

〈F †Z〉 = µZ〈Z〉+ λ〈HH ′〉 = 0 , (12)

up to ����SUSY effects ∝ (m2
soft)Z/|µZ |2. Therefore, the contribution that arises from a trilinear

with two Higgses is more appropriately classified as a ����SUSYEWS contribution. (For a detailed
discussion see the original work [1].)

Neutrino mass operators that come from a class A or B superoperator via a gauge vector
superfield must have mass dimension higher than 5, since V̂ is an hypercharge singlet. The least
is a dimension-6 operator

∫
d4θ

{
V̂ D2(L̂L̂) , D2V̂ L̂L̂

}
⊗ Ĥ ′ ⊃ LLH†HH ′ , (13)

that is conceivable if there exists a hypercharge +1 Higgs (H ′). On the other hand, if the low
energy Higgs sector coincides with that of the MSSM, the leading pure-����SUSYEWSB contributions

that are independent of 〈F †Z〉 correspond to the dimension-7 operators

LL⊗
{
HuHu , HuH

†
d , H

†
dH
†
d

}
⊗
{
H†uHu , H

†
dHd

}
. (14)

2 Here and throughout the text, “mod X” means modulo insertions of X.
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Since realistic SUSY models have Higgs bilinears, be them dynamically generated or
otherwise, it is conceivable that in general models there are pure-����SUSYEWSB contributions to
LLHH. While pure-����SUSYEWSB contributions are indeed guaranteed to exist in any model
(see section 2.3), there are models in which they appear only at an higher order of perturbation
theory, while the leading order (LO) contribution is proportional to ����SUSYEWS.

2.2. ����SUSYEWS contributions
����SUSYEWS contributions are most conveniently understood by means of employing spurionic
superfields: objects that are superfields at the formal level but that have constant θ-dependent
values. The underlying idea is to perform perturbation theory in superspace while considering
possible couplings to spurions (thus parameterising ����SUSY) in order to obtain the effective

superoperators and see whether the θ-integration projects the spurions in a way that
∫
d4θ ÔP ⊃

OP ∈ OPν . We can thus identify three cases:

a)

∫
d4θ X̂ ÔP , b)

∫
d4θ X̂† ÔP , c)

∫
d4θ Ŷ ÔP , (15)

modulo D2X̂, D̄2X̂† and D2D̄2Ŷ insertions, and where X̂ and Ŷ are F - and D-term ����SUSY
spurions, respectively.

In this work we are strictly interested in the case in which the ����SUSY spurions are neutral
under any symmetry of visible sector superfields. In such a framework, one expects that both

{X̂, X̂†, Ŷ }ÔP (cases a, b and c, respectively) and ÔP are generated up to some order in
perturbation theory. For example, if a model generates

1

M2

∫
d4θ

(
X̂†

MX

)
L̂L̂ĤuĤ

†
d ⊃

msoft

M2
LLHuH

†
d , (16)

then it would most certainly also generate

1

M2

∫
d4θL̂L̂ĤuĤ

†
d ⊃

µ

M2
LLHuHu . (17)

We can now ask ourselves which instances of ÔP ∈ ÔPν do not yield an OP ∈ OPν in the
absence of ����SUSY spurions3. (This is the operational definition of superoperators that only give
OP ∈ OPν from ����SUSYEWS.) The general answer is:

1. ÔP = D2(L̂L̂Ĥn)⊗
(

a superoperator whose D-term is zero at pext = 0
)

;

2. ÔP = L̂L̂⊗
(

a superoperator whose F †-term is zero at pext = 0
)
.

(18)

For example, consider L̂L̂ĤuĤu: X̂†L̂L̂ĤuĤu yields an OP ∈ OPν , namely LLHuHu, whereas
L̂L̂ĤuĤu does not. For a non-trivial example, consider D2(L̂L̂)ĤuĤu (cf. Eq. (31)).

In the following we give the general form of type-1 and -2 superoperators. For this, let Ẑ†

and V̂ denote any superfields whose Ẑ† (mod Ĥ†) and V̂ (mod Ĥ, Ĥ†) parts satisfy Eqs. (11)
and (10), respectively. Type-1 and -2 superoperators that only give OP ∈ OPν are then:

1.a) D2(L̂L̂Ĥn)⊗
{
Ẑ†, D2V̂

}
⊗
{
Ĥ†, D̄2Ẑ†, D2Ẑ,D2D̄2V̂

}n′

;

1.b) D2(L̂L̂Ĥn)⊗
{
Ẑ, D̄2V̂

}
⊗
{
Ĥ, D̄2Ẑ†, D2Ẑ,D2D̄2V̂

}n′

;

1.c) D2(L̂L̂Ĥn)⊗
{

(Ĥ†)k, (Ĥ)k
}
⊗
{
D̄2Ẑ†, D2Ẑ,D2D̄2V̂

}n′

;

3 To simplify the discussion, from now on any ÔP ∈ ÔPν is defined modulo ���SUSY insertions.
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2.b) L̂L̂⊗
{
Ĥ,D2Ẑ, D̄2Ẑ†, D2D̄2V̂

}n
; (19)

where n, n′, k = 0, 1, ... stand for any number of insertions, though constrained by internal
symmetries.

2.3. Are there models in which the pure-����SUSYEWSB subset of OPν is empty?
First, let us analyse possible contributions of gauge vector superfields. As there are U(1)Y and

SU(2)L charges flowing in internal lines of any supergraph contributing to ÔP ∈ ÔPν , it seems

natural to think that insertions of external V̂U(1)Y and V̂ α
SU(2)L

into internal lines can map any

superoperator to one which yields a pure-����SUSYEWSB OP ∈ OPν . An example is

D2(L̂L̂)ĤuĤu → D2(L̂L̂)ĤuĤuV̂U(1)Y , (20)

as we will see in the context of the model example presented in section 4. Although supergraphs

with any given number of external V̂ s can be constructed from any underlying ÔP ∈ ÔPν , the so

obtained ÔP ∈ ÔPν may vanish as the supergraphs add up to zero. More generally, V̂ s insertions
can be seen to correspond to terms in the V̂ -expansion of gauge completed superoperators. For
example, D2(L̂L̂)ĤuĤuV̂U(1)Y is a term in the V̂ -expansion of

D2(L̂L̂e−2g′YLV̂U(1)Y )ĤuĤue
−2g′YHu V̂U(1)Y . (21)

Next, we will see that for models in which there exists a Higgs bilinear, there is always a

pure-����SUSYEWSB contribution proportional to µ. First, pick a ÔP ∈ ÔPν . Now, each supergraph

contributing to ÔP has either at least one external Higgs locally connected to loop superfields
(say, class-a) or none (class-b). Without loss of generality, say that for a particular supergraph

belonging to class-a the vertex is ĤX̂1X̂2, where X̂s are loop superfields. One can then see
(cf. figure 2) that an insertion of Ĥ† (Ĥ) followed by an insertion of Ĥ (Ĥ†) leads to a supergraph
for the superoperator

Ĥ†Ĥ ÔP . (22)

D̄2

Ĥ

X̂1 X̂2

⇒ D̄2 D2 D̄2

Ĥ Ĥ Ĥ

X̂1 X̂2 X̂1 X̂2

⊃ −�D̄2

Ĥ Ĥ Ĥ

X̂1 X̂2 X̂1 X̂2

−→ D̄2

Ĥ Ĥ Ĥ

X̂1 X̂2D-algebra
point of view

Figure 2. A ĤX̂1X̂2 vertex (leftmost diagram) implies a non-vanishing ĤĤ†ĤX̂1X̂2 interaction
that is local in θ, i.e. “a vertex” from the D-algebra point of view (rightmost diagram).

By means of the procedure described in figure 3, each class-b supergraph can also be

transformed into a supergraph for Ĥ†Ĥ ÔP.

Hence, if class-a or -b supergraphs for superoperator ÔP do not add up to zero, the

transformed ones do not add up to zero for Ĥ†Ĥ ÔP either. Now, if there exists a Higgs

bilinear, Ĥ†Ĥ ÔP yields a pure-����SUSYEWSB OP ∈ OPν regardless of ÔP ∈ ÔPν . One expects
such contributions to mν to be proportional to

λ2

(
µ

MX

)2 or 1

, (23)
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Φ̂

Φ̂′

Ĥ

Ĥ ′

...
. . .

−→ Φ̂

Φ̂′

Ĥ

Ĥ ′

...

Φ†

Φ′†

Ĥ† Φ

Φ′ Ĥ

. . .

−→ Φ̂

Φ̂′

Ĥ

Ĥ ′

...

Φ†

Φ′†
Ĥ† Φ

Φ′

Ĥ

. . .

Figure 3. Schematic of a procedure to go from a class-b supergraph for ÔP (leftmost diagram)

to a supergraph for Ĥ†Ĥ ÔP (rightmost diagram) by means of a double insertion in the loop

line to which the 1PR leg is attached (middle diagram). The dot at which the lines of Φ̂†

and the two Φ̂s meet is a vertex in the sense of figure 2. In order to describe all conceivable
assignments of chiralities to external and internal superfields, the chiralities of Ĥ, Ĥ ′, Φ̂ and Φ̂′

are left unspecified. However, Ĥ, Φ̂ and Φ̂′ have the same chirality, as is implied by the vertex.
Moreover, and so that all conceivable propagators are described, we also do not specify how Φ̂
is connected to the loop(s) (depicted by the circle), nor how Φ̂′ is connected to Ĥ ′.

for class A or B superoperators, respectively, and where λ is the coupling strength of Ĥs to the
loop(s). We will see an example of this in the model example of section 4, where an insertion of

Ĥ†Ĥ into the LO topologies leads to dimension-7 contributions proportional µ/M4 and µ2/M5

(cf. Eq. (34)).

3. Models in which mLO
ν is proportional to soft-����SUSY involving seesaw mediators

To construct models of this kind one may first choose a set of superoperators from those identified
in Eq. (19), and then postulate the existence of superfields that generate the topologies for
these superoperators. Finally, one should pick an internal symmetry group that forbids all
couplings that could generate a pure-����SUSYEWSB OP ∈ OPν up to the same order of perturbation
theory. We cannot think of any serious obstruction that would compromise this procedure
for constructing general models of this kind. In fact, in the next section we give a proof of
existence based on a one-loop type-II seesaw, also showing that this kind of models need not be
complicated.

In here, we shall identify the simplest of such model-topologies. To be precise, we consider
one-loop topologies that generate the lowest dimension superoperators that can only give
OP ∈ OPν from ����SUSYEWS. From Eq. (19) one can see that the candidate superoperators
are

1.a) D2(L̂L̂)Ĥ†d ⊗
{
Ĥ†d, D̄

2Ĥ†d, D
2Ĥu

}
∪D2(L̂L̂Ĥu)Ĥ†d ;

1.b) D2(L̂L̂)Ĥu ⊗
{
Ĥu, D̄

2Ĥ†d, D
2Ĥu

}
∪D2(L̂L̂Ĥu)Ĥu ;

1.c) D2(L̂L̂)⊗
{
D2Ĥu ⊗

{
D2Ĥu, D̄

2Ĥ†d

}
, D̄2Ĥ†dD̄

2Ĥ†d,

D2(ĤuĤu), D̄2(Ĥ†dĤ
†
d)
}
∪D2(L̂L̂ĤuĤu) ∪ 1.a ∪ 1.b ;

2.b) L̂L̂⊗
{
Ĥu ⊗

{
Ĥu, D

2Ĥu, D̄
2Ĥ†d

}
, D2Ĥu ⊗

{
D2Ĥu, D̄

2Ĥ†d

}
,

D̄2Ĥ†dD̄
2Ĥ†d, D

2(ĤuĤu), D̄2(Ĥ†dĤ
†
d)
}
.

(24)
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Then, from D-algebra considerations, and discarding topologies with self-energies4, one obtains
the following list of possibilities:

• D2(L̂L̂)ĤuĤu, L̂L̂D2(ĤuĤu), D2(L̂L̂)Ĥ†dĤ
†
d and L̂L̂D̄2(Ĥ†dĤ

†
d)

– type-II without a chirality flip;

• L̂L̂ĤuĤu (1PR)
– type-II with a chirality flip, type-I and -III;

• L̂L̂ĤuĤu (1PI).

The corresponding supergraph topologies are depicted in figure 4.

L̂ / Ĥu

L̂ / Ĥu

D2

Ĥu / L̂

Ĥu / L̂

D̄2

D2

D̄2

D2
L̂

L̂

D2

Ĥd

Ĥd
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L̂ / Ĥu / L̂

D̄2D2
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Figure 4. One-loop supergraph topologies that are identified in the text. From left to right:

D2(L̂L̂)ĤuĤu or L̂L̂D2(ĤuĤu), D2(L̂L̂)Ĥ†dĤ
†
d, L̂L̂D̄

2(Ĥ†dĤ
†
d), L̂L̂ĤuĤu (1PR) and L̂L̂ĤuĤu

(1PI).

We calculated the contribution of these topologies to OPν up to order 3 in msoft, finding
three kinds of leading dimensionful suppression factors:

• µmsoft/M
3 or m2

soft/M
3 – for D2(L̂L̂)ĤuĤu and L̂L̂D2(ĤuĤu);

• µm2
soft/M

4 or m3
soft/M

4 – for L̂L̂D̄2(Ĥ†dĤ
†
d);

• m2
soft/M

3 – for D2(L̂L̂)Ĥ†dĤ
†
d and L̂L̂ĤuĤu (both 1PR and 1PI).

The absence of a contribution linear in msoft for some topologies is most easily seen to stem from

the fact that one-loop topologies for L̂L̂ĤuĤu, as well as the one-loop 1PI parts of D2(L̂L̂)Ĥ†dĤ
†
d

and L̂L̂D̄2(Ĥ†dĤ
†
d), use vertices of a single chirality. Moreover, and in regard to L̂L̂D̄2(Ĥ†dĤ

†
d),

the leading contributions from the D̄2(Ĥ†dĤ
†
d) piece are µHuH

†
d and A∗H†dH

†
d.

We also found that one-loop realisations with self-energies had leading dimensionful
suppression factors that ranged from µmsoft/M

3 or m2
soft/M

3 to µm2
soft/M

4 or m3
soft/M

4.
If we take µ ∼ msoft, we may say that in one-loop models of this kind LLHH operators have a

dimensionful suppression of at least m2
soft/M

3. This result is naively expected for type-II seesaws

without a chirality flip, since
∫
d4θD2(L̂L̂)ĤĤ has mass dimension 7. For other realisations this

dependence is not trivial, since for an underlying superoperator L̂L̂ĤĤ one in general expects a
msoft/M

2 dependence. It is worthy to mention that at higher loops there are topologies that lead
to the naively expected dimensionful suppression of msoft/M

2. Indeed, the one-loop exception

4 They are analysed in appendix C of [1].
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can be seen to be a consequence of the fact that the holomorphy of the superpotential restricts
the non-trivial 1PI parts of one-loop topologies in a way that all couplings and masses involved
must have the same chirality.

4. A model example
To construct a model example we follow the recipe outlined at the beginning of the previous
section and choose a model based on an one-loop topology for the superoperator D2(L̂L̂)ĤuĤu

(cf. figure 4). As the most general set of scalar superfields and superpotential terms in this
topology has size 7 and 5, respectively, we can choose to supplement the model with a new U(1)

symmetry, say U(1)X , that is carried by the superfields in the loop (say X̂s). These will be
responsible for communicating L-number breaking to the actual leptons via the exchange of a
type-II seesaw mediator, say ∆̂.

In order to make the coupling ∆̂†ĤuĤu genuinely radiative, while allowing for a mass term
for ∆̂, we have to link it to the VEV of a superoperator of at least dimension 4 in superfields.
One simple example is

ρ̂†∆̂†ĤuĤu → 〈ρ†〉∆̂†ĤuĤu + ρ̂†∆̂†ĤuĤu . (25)

To achieve this we will postulate a U(1) L-number symmetry that gets broken by the VEV of the
scalar component of ρ̂. We leave unspecified the actual mechanism driving 〈ρ〉 6= 0. Now, being

L-number breaking communicated by Xs, the simplest choice is then to couple X̂s directly to
ρ̂ by making a ρ̂† insertion in the loop line where chirality flips. This leads to the the left-hand
side diagram of figure 5. We will furthermore take X̂1 and X̂2 to possess superpotential mass
terms already at the L-number symmetric phase, even though it is not required by the topology.

L̂

L̂

D2

∆̂

Ĥu

Ĥu

D̄2

D2

D̄2

X̂1

X̂2

|
X̂3

X̂3

D2

L̂

L̂

∆̂− ∆̂

Ĥu

Ĥu

X̂1
−X̂1

X̂2
−
X̂2

|
X̂3

X̂3

D̄2D2

D̄2

D2

D̄2

D̄2

D2

D2

Figure 5. Leading order subset of ÔPν in the model example.

A model consistent with this description is summarised in table 1 and its most general
renormalisable superpotential is given by5

W := WMSSM +M∆∆̂∆̂ +

2∑

i=1

MXiX̂iX̂i + λρ̂X̂3X̂3

+Ĥu

(
λ1X̂1X̂3 + λ2X̂2X̂3

)
+ ∆̂

(
λLL̂L̂+ λXX̂1X̂2

)
+ λ̄X∆̂ X̂1X̂2 . (26)

In the absence of the last term the model acquires the R-symmetry shown in the last column
of table 1. This term allows for a chirality flipped type-II seesaw of superoperator L̂L̂ĤuĤu, as
shown in the right-hand side supergraph of figure 5. The broken L-number phase corresponds
to

λρ̂X̂3X̂3 →MX3X̂3X̂3 + λρ̂X̂3X̂3 , MX3 := λ〈ρ〉 . (27)

5 We assume that the ûcd̂cd̂c term is forbidden by, for instance, R-parity or baryon number conservation.
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Table 1. Extension of the MSSM in the model example. We omitted the conjugates of ∆̂ and
X̂1,2. U(1)R stands for an R-symmetry that is acquired as λ̄X → 0.

SU(2)L ⊗ U(1)Y U(1)X U(1)L U(1)R

∆̂ (3, 1) 0 −2 4

ρ̂ (1, 0) 0 2 0

X̂1 (2,−1/2) 1 1 −2

X̂2 (2,−1/2) −1 1 0

X̂3 (1, 0) 1 −1 0

X̂3 (1, 0) −1 −1 2

The set of LO superoperators that break L-number proceed from the two supergraphs
of figure 5 and are

D2(L̂L̂)ĤuĤu , L̂L̂ĤuĤu . (28)

To see that there is indeed no other contributions up to the same order of perturbation theory,
notice that a suitably defined L-number symmetry is recovered as any coupling in {λ1, λ2, λL},
or both λX and any in {λ̄X ,M∆,MX1 ,MX2}, goes to zero. Thus, any superoperator that breaks
L-number is proportional to

a := λ1λ2λLλ
∗
X or M∆MX1MX2 b := λ1λ2λLλ̄XM∆MX1MX2 . (29)

In the pext → 0 limit the LO coefficients for these operators read

−
(

aMX3

32π2M2
∆

)
C0 ,

(
bMX3MX1MX2

32π2M∆

)
D0,0 , (30)

respectively, and where C0 and D0 are abbreviations of scalar one-loop 3- and 4-point integrals.
Then, in the SUSY limit we have

∫
d4θ D2(L̂L̂)ĤuĤu = −�(L̃L̃)

[
H̃uH̃u + 2FHuHu

]
−�(HuHu)

[
LL+ 2FLL̃

]

+4 (pL + pL̃)2 LH̃uL̃Hu , (31)

while
∫
d4θL̂L̂ĤuĤu = 0. Hence, there is no pure-����SUSYEWSB contribution to neutrino masses

at LO. To arrive at this same conclusion by a different route, consider the following. First, we
note that only the first supergraph has a non-vanishing 1PI part:

∫
d4θ ∆̂†ĤuĤu = 2∆̃†α̇(pH̃u + pHu)βα̇H̃

β
uHu + F †∆

(
H̃uH̃u + 2FHuHu

)
−∆†�(HuHu) . (32)

Then, by adding these operators to the classical Lagrangian, one concludes that ∆ acquires

a VEV, since 〈FHu〉 = µ∗〈H†d〉 6= 0 gives a (tadpole) contribution to F †∆ ⊃ M∆∆. However,

such a VEV has no effect upon mν in the absence of ∆ − ∆ mixing. This VEV is no
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longer inconsequential when ����SUSYEWS contributions are considered because the B-term B∆∆∆
provides the mixing, so that 〈∆〉 → 〈∆〉.

Due to its instructive value, we will now analyse in terms of component fields the reason
behind the absence of pure-����SUSYEWSB contributions to LLHH. In order for the left-hand side
supergraph of figure 5 to contribute to LLHH, the three-scalar coupling ∆†HuHu would have
to be generated. At LO there are in fact three topologies contributing to this coupling as we
show in figure 6. However, in the pext → 0 limit, the spinor loop topology cancels exactly the
scalar loop topologies. This result can also be understood to be a consequence of the fact that
one cannot draw diagrams for ∆†HuHu that are both holomorphy compliant and have at least
an external F †−F pair. In the case of the second supergraph, one can see that it would require
the generation of the coupling F∆HuHu, whereas the holomorphy of the superpotential makes
it impossible to to draw any component field diagram for such a coupling.

∆

Hu

Hu

X̃1

X̃2

X̃3

X̃3 ∆

Hu

Hu

X1
X3

∆
Hu

Hu

X2

X3
∆

Hu

Hu

X1

X2

X3
∆

Hu

Hu

X1

X2

X3

m

FX2

FX3

m

FX1

FX3

m

FX2
X2FX2

FX3

m

FX1

X1

FX1

FX3

Figure 6. Leading order diagrams for ∆†HuHu in the model example.

The pure-����SUSYEWSB subset of OPν can be most easily identified by reminding the analysis
carried out in section 2.3. One may then see that it comprises the superoperators

D2(L̂L̂)ĤuĤuV̂U(1)Y , D2(L̂L̂)ĤuĤuV̂SU(2)L , D2(L̂L̂)ĤuĤuĤ
†
uĤu , L̂L̂ĤuĤuĤ

†
uĤu , (33)

which generate the dimension-7 operators

− 1

64π2M2
∆MX

(
a

[
g2

2c2
w

(LHu) (LHu)H†uHu +

(
g2c2w

2c2
w

+
|µ|2(|λ1|2 + |λ2|2)

6M2
X

)
(LHu) (LHu)H†dHd

+

(
g2 − |µ|

2(|λ1|2 + |λ2|2)

3M2
X

)
(LHu) (HuHd)H

†
dL

]

+
bM∆µ (|λ1|2 + |λ2|2)

6M2
X

(LHu) (LHu) (HuHd)

)
, (34)

where we have taken the simplifying limit MX1,2,3 = MX .

Now we turn to the LO subset of OPν , which is made of dimension-5 operators that come
from����SUSYEWS. In figure 7 we illustrate some of the soft-����SUSY insertions behind such operators.
Complete expressions for them up to order 3 in msoft are given in appendix F of [1]. In here
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Figure 7. Example of soft-����SUSY insertions (grey blobs) that generate the LO subset of OPν
in the model example. For a detailed list up to order 3 in msoft see [1].

we take the simplifying limit MX1,2,3 = MX , (m2
soft)X1,2,3 = (m2

soft)X1,2,3
= m2

soft, A1,2 = A and

BX1,2,3 = BX , which gives

1

64π2M2
∆

(
a

[
2m2

soft

MX
+

2A

MX

(
A∗X −

B∆

M∆

)
− A∗XBX

M2
X

]
+ bM∆

BX
M2
X

)
LLHuHu

− a

32π2M2
∆

(
µ∗

MX

)[
A∗X

(
1− m2

soft

M2
X

− (m2
soft)∆

M2
∆

)
− B∆

M∆

]
LLHuH

†
d

− a

192π2M2
∆

(
µ∗

MX

)2 A∗XBX
M2
X

LLH†dH
†
d . (35)

Let us briefly discuss the origin of some of the terms. First, the contributions of m2
soft

(i.e. non-holomorphic mass) terms. These induce mass differences between scalar and spinor
components of chiral scalar superfields while preserving the chirality flow of the line into
which they are inserted. Therefore, they invalidate the conclusions related to figure 6 by
introducing a mismatch in the cancellation between spinor and scalar loops, thus leading to
a non-vanishing contribution to mν . Unlike m2

soft, B-term insertions reverse the chirality flow,
thus enabling the construction of diagrams for F∆HuHu. This is indeed the reason behind
the BX -term contribution proportional to b. Finally, the B∆ contributions. As commented
above, EWSB induces a VEV for ∆ which, through B∆, induces a VEV for ∆, thus leading to

LLHuH
†
d ⊂ LL〈∆〉 ⊂

∫
d2θW. To obtain the B∆ coefficient of LLHuHu one must take into

consideration the shift in 〈∆〉 induced by A1 +A2.

We summarise in table 2 the contributions to mν that we have been discussing, and where
we take the simplifying limit of λX = λ̄X = λ1,2 = λ, MXi = M∆ = M and a common scale m

for all the soft-����SUSY effects involving ∆̂s or X̂s.

Table 2. Contributions to mν (see text) up to an overall factor of λLλ
3

16π2

v2sβ
M .

Type Intrinsic factor

One-loop dim-5 µm
M2 cβ − 5

2

(
m
M

)2
sβ

One-loop dim-7

V̂ − g2

4c2w

(
v
M

)2 (
c2
β − s2

β

)
sβ

Ĥ†Ĥ Class A |λ|2
2

( vµ
M2

)2
c2
βsβ

Ĥ†Ĥ Class B − |λ|26

(
v
M

)2 µ
M cβs

2
β
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5. Conclusions
In this work we studied the connection between mν and ����SUSY that arises when neutrino masses
are radiatively generated. We started by distinguishing the different ����SUSY contributions w.r.t.
their involvement in EWSB. This allowed us to identify a subset of superoperators that could only
contribute to mν through ����SUSY effects unrelated to EWSB and which involved the mediators
of the radiative seesaw. An interesting aspects of these effects is that they can be quite small
without being in conflict with experimental data. One may then conjecture that they are (at
least partially) responsible for the smallness of neutrino masses, thus allowing for a seesaw scale
within foreseeable experimental reach.

We analysed the simplest (one-loop) topologies that may underlie models with this interesting
feature and found that they all generated LLHH operators with a leading dimensionful
dependence that ranged from µmsoft/M

3 or m2
soft/M

3 to µm2
soft/M

4 or m3
soft/M

4.

As an application of this more abstract analysis, we constructed a model example based on
a one-loop type-II seesaw, which also served as a proof of existence of such interesting models.
A phenomenological analysis of this model will be presented elsewhere.
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