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Abstract. In these proceedings we present a mini-review on the topic of the Dyson—
Schwinger/Bethe—Salpeter approach to the study of relativistic bound-states in physics. In
particular, we present a self-contained discussion of their derivation, as well as their truncation
such that important symmetries are maintained.

1. Introduction

In Quantum Chromodynamics (QCD) the only observable objects are hadrons, which appear
as bound-states of the elementary (but not observed) quark and gluon degrees of freedom.
Consequently, most phenomenological aspects of QCD are essentially non-perturbative problems
and require an appropriate framework for their study. One such approach is the combination
of Dyson—Schwinger (DSE) and Bethe-Salpeter (BSE) equations that provide a means to study
the non-perturbative properties of hadrons — at the microscopic level — without abandoning
a priori the principles of QCD as a scale dependent continuum quantum field theory. We
devote these proceedings to a concise exposition of known results about how this framework can
be systematically constructed as well as a description of the main technical issues faced upon
solving the DSEs and BSEs in combination.

We refrain, for reasons of space, from including here results for observable data that can
already be found in the literature [1-3]. Meson spectra have been thoroughly studied in [4-28]
and references therein. Baryons have been studied in the quark-diquark approximation [29-37],
and also as three-body objects [38-43]. Other observables of enormous experimental interest in
deep inelastic scattering such as PDAs, PDFs, GPDs are also starting to be investigated [44-48].
Most of these calculations were performed upon truncating the (anti)quark-quark interaction
to a single gluon exchange, the so-called Rainbow-Ladder truncation. This can be seen as the
leading order interaction mechanism in the systematic expansion to be described below. While it
provides accurate results for ground-state pseudoscalar and vector mesons, and also for ground
state baryons, it shows clear deficiencies in all other channels. For this reason, current interest
lies is the inclusion of interaction mechanisms beyond the leading one [17,49-61], and in the
extension to glueball [62-64] and tetraquark bound-states [65].

The main purpose, therefore, of this contribution is to make it apparent that one is not
pursuing a blind hunt for missing interaction mechanisms, but that there is a step-by-step
programme for their inclusion in a systematic manner.
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2. Dyson—Schwinger and Bethe—Salpeter equations

A complete description of a continuum quantum field theory, and in particular of QCD, is
given when all the (infinitely many) Green’s functions of the theory are known. Functional
methods deal with these without abandoning the realm of continuum physics, thus providing
an approach complementary to that of lattice calculations. In particular, Dyson-Schwinger
equations constitute an infinite set of coupled, non-linear integral equations for the full Green’s
functions of the theory. We define in this section the basic concepts to be used later on.

2.1. Functional Methods
The generating functional for full Green’s functions corresponding to a classical Euclidean action
S[¢] is given by

210) = [ Do SO — fexp (~idis) (1

where J;¢; denotes [ dizJ,(z)¢.(x) with i a superindex that subsumes possible discrete
(collectively denoted a) and continuous indices z. This functional is normalised such that
Z[0] = 1. The (-) indicate the weighted functional average with sources subsequently set to
zero. In the presence of external sources one writes (-) ;.

The generating functional for connected Green’s functions is given by

W[J) = —iln Z[J] , (2)

which can be shown by a Taylor expansion. Furthermore, the generating functional for one-
particle irreducible vertex functions (the effective action) is obtained by a Legendre transform

oW J
M) = WU = 6, with o = (6, = 1

3)

2.2. Dyson—Schwinger Equation
The observation that the integral of a total derivative vanishes, true so long as the functional
measure is invariant under spacetime translations of the field variables

(sst-1) =0, (1)

can be used to obtain the Dyson—Schwinger equations (DSEs). Equivalently, one can view the
DSEs as a consequence of the Ward-Identity associated with translational invariance. These
DSEs are the quantum field theoretic equivalent of the classical equations of motion. Upon a
vertex expansion we generate the infinite tower of non-linear integral equations that relate the
fundamental Green’s functions of the quantum field theory to one-another. In a very dense
notation [66] the DSEs for proper n-point Green’s functions may be obtained from

oTlg] 85 [¢+52W 5}:0’ (5)

Sdi 0 5J6J 66
by taking vacuum expectation values (-) of the nth derivative of the functional.
2.8. Bound state equations
Consider an n-particle Green’s function G (p1, - .., pn) describing the evolution of an n-particle

system (each carrying momentum p;), and its amputated counterpart the scattering scattering
matrix T (p1, ..., pn)

¢™ =G + ayiT™aY, (6)
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with G(()n) the disconnected product of n-propagators. Then we may obtain T™ from the Dyson
equation

T = K + KG{T™ (7)
with K the 2,3,-, ..., n-particle irreducible interaction kernel. When the system forms a bound
state, the momentum-space function T develops a pole at P2 = —M? (in Euclidean spacetime)

with P# = "7 p!* the total momentum. At the pole we define

PP (®)

where N is a state-dependent normalisation factor, ¥ is the bound-state Bethe-Salpeter
amplitude and W its charge conjugate. Inserting this ansatz into the Dyson equation for the
T-matrix and equating residues yields the homogeneous Bethe-Salpeter equation

U =KGMw, (9)
or for its conjugate
UK =06 (10)
It can also be shown that the correct normalisation condition for Bethe-Salpeter amplitudes
is [67,68] . »
v <d§j§2 —z'd;;? ) v=1. (11)

Finally, Bethe-Salpeter amplitudes are the amputated versions of the Bethe-Salpeter wave

functions ¢ = GE,")\II. Using this notation, we can rewrite (9) as

=Ko, (12)

The interaction kernels K contain a sum of infinitely many terms. If they are known, one can
then solve the BSEs and obtain all the information about the bound states of the theory.

3. Deriving the Bethe-Salpeter kernel

The effective action provides a systematic means to derive (generalised) Bethe-Salpeter kernels.
This not only enables new interaction mechanisms to be included in a controlled way, but ensures
that relevant symmetries are maintained even when approximations are made. Here, we outline
the main ideas behind this procedure for the case of two- and three-body bound-state equations
following Refs. [69-71].

3.1. Local case

We start with the case of local fields, introducing the main ideas applicable to the bi- and tri-
local fields necessary for the study of bound-state equations. First, let us consider the generating
functional for a purely fermionic action and introduce source terms J(z) for a local operator
Or(z) = {¥(z),¢¥(z),¥(x)?, ...}, with k an index describing all discrete indices of the operator
and, also, distinguishing the different possible local operators

Z[J] = N’/D¢e—i(5[¢]+ka(I)Ok($)) 7 (13)
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where N = 1/7 [J]| J—o- Defining, as above, the generating functional for connected Green’s
functions as W[J] = —ilog Z[J], the one-particle irreducible (1PI) effective action is given by
the Legendre transformation

P = wiJ) - / A2y (2) Wy (x), (14)

with the classical (super)field defined as ¥y (z) = 6W[J]/6Ji(z). It can be determined in the
absence of sources through satisfaction of the stationary condition
OT[¥]
oWy

=0. (15)
Consider a solution of this stationary condition, \I/,(CO)(QZ). We call it stable if there exists solution
1) (0) : : S . (0)
‘Ilgg (x) = U7 (z) + AV (z) with AV (x) suitably infinitesimal. Expanding around W,”(x)

yields

ST
50k

ST

- [ 520 (V]
‘I’kZ‘Ifch) (5‘11k($)5\1fg(l'/)

AUy(z')+---=0, (16)
vy =w?

with a minus sign from exchanging the order of derivatives. To first order this equation implies

/ gy Y]
oWk ()0, (')

That is, the solution \IJ,(CO)(:I:) is stable if AWg(x) is an eigenvector of §%I'/6WsV with zero
eigenvalue. To interpret this, let us recall the following identity

10 0TV CWI o sy
/ S0 )00 () 5 Tn o T () emd (@ =) (18)

AWy(z') =0 . (17)
0y =w?

Now, consider an eigenvector & (z) of 62W/§J8.J with eigenvalue 1/\

, PWJ] n_ 1
/d433 Wfﬁ(ﬂf) = X&c(x) . (19)

Using the identity (18) we arrive at

4,/ 521—‘[\1}] A I~
/d T W&(u@) = A () (20)

Therefore, &,(x) is also an eigenvector of §2I'/6WiW¥ with eigenvalue A. In particular, the
perturbation AW (x) corresponds to an eigenvector with A = 0, wich in turn is related to
a pole in §2W/6.J6J. In summary, stable solutions for W (z) are associated to poles of the
connected Green’s functions given by 62W/8J8J (e.g. propagators if O(z) = ¥(z)).

3.2. Bilocal case: Two-body bound-states

For the study of two body problems we add a bilocal term K~ (x,4)OF (x,%) to the partition
function (13), with k again distinguishing the different bilocal operators and the other discrete
indices described by r, s. Specialising to the case of fermion-antifermion bound states (mesons)
we limit the discussion to Os(z,y) = ¥.(2)Ys(y) and antisymmetric sources K, (z,y) =
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— K (y,z). Then, in addition to the classical field Uy(x) we have the connected two-point
Green’s function

oW |J, K] 1 -
— = = _ (U v Gap(x, . 21
SKo(ry) 2 (Pa(2)Th(y) + Gap(z,9)) (21)
The 2PI effective action is then defined as
1 _
LU, G =W[J, K] - / dz gy (z) U (x) — 3 / drzd y Ko (z,y)Va(2) Uy (y) (22)
1 4 4
- 5 d*zd yKab(l'ay)Gab(l’ay) ) (23)
which admits, in addition to (15) and in the absence of sources, the stationary condition
Or[¥, G]
———— =0. 24
5Gab(xa y) ( )

This is equivalent to the Dyson—Schwinger equation for the fermion propagator, as we show
below.
Following the ideas of previous section, a solution Gifl),) (x,y) of (24) is stable if there exists a
perturbed solution Gglb) (z,y) = Gg;) (z,y) + AGgp(z,y) determined by a non-trivial solution of
/ d4$,d4y, 52F[\II, G]
5Gab($7 y)éGa’b/ (:Ela y/) G=@G0)

We show below that this is indeed equivalent to the usual Bethe-Salpeter equation for a fermion-
antifermion bound state. Nevertheless this can be seen here, analogous to the local case, through
the fact that a solution of (25) is related to a pole in 6°W/§ KK, viz. to a pole in a four-point
Green’s function.

AGuy(2',y)=0. (25)

3.2.1. Relation to the Bethe-Salpeter equation It is known [72] that the 2PT effective action can
be written as

T[¥,G] = S[¥] +iTrlog G — iTrGy G + TV, G , (26)

where I';[U, G| contains two-particle irreducible diagrams only and Gy is the classical propagator.
The stationary condition for G gives, as promised above, the Dyson-Schwinger equation for the
propagator. Indeed, taking a functional derivative with respect to the propagator G
STY, Gl 1 oLV, G
5Cop(@y) =Gy (z,y) —iGy (2, y) + = =0, (27)

6Gab(x7 y)
where we used 6Trlog G = G~'§G. Defining the self-energy as ¥ = —idl's/6G we can rewrite
the stationary condition for G as

G (z,y) = Gyop(@,y) — Sap(@,y) | (28)

which is the gap equation for the fermion propagator. If G is one of the solutions of the gap
equation, we can take one further functional derivative with respect to the propagator G and
rewrite (25) as

§20[0, G
0= [ d'z/d'y ’
/ Y 5Ga(@, 9)0Ga (7, | g

~ / i dty (-G (@,a)GY) (1,9) + Kanealw,y37',9)) AGeal@l ), (29)

AGa’b/ (xla y,)
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where we used 5Mi;1/5Mkl = —Milelgl. This is precisely the Bethe-Salpeter equation (12)
for a Bethe-Salpeter wave function AG, with the quark-antiquark interaction kernel given by

52(11)('%'7 y)

_ Tad\" IJ . 30
0Gea(2",Y') | e (30)

Kab;cd($7 Y; xla y/) =

One then sees immediately that the interaction kernel is obtained by functionally cutting
propagator lines from the self-energy. Note that the solution G = G(©) is inserted into the
self-energy only after the cutting has been performed.

3.2.2. Goldstone bosons. Chiral symmetry. We show here that when the meson BSE is derived
using the methods outlined above, the spontaneous breaking of chiral symmetry is accompanied
by the appearance of a pseudoscalar massless bound state (the Goldstone boson). More details
can be found in [73]. Consider that under a global SU(2) chiral transformation

. a : a : ta
\I// — 5T 9\11 ’ G/ — W57 0G€Z'y57 0 ’ (31)

the 2PI effective action (we ignore the dependence on the fields, as it plays no role in this
discussion) is invariant I'[G’] = I'[G]. One then has, for infinitesimal transformations

6or

Bl = ——+——
[ ] 5Ga’b/ (a:’,y’)

{is7", G (x/’ y/) Yoy =0 (32)

Taking one further derivative with respect to G yields

R oT 6T

574, G x’, ! oty + —————T".b + T V506 =—=———< =0.
3G (0.9) Gy (@) VT G (@t ) ke + 5o ST 80 + T 05 S
(33)

When we set G to the solution of the stationary condition, G = G(9) the equation simplifies

5T
6Gab (I’, y) Ga'b’ (.lel, y,) G=@G(0)

{157, GO (2,4} = 0. (34)

If chiral symmetry is spontaneously broken then {v57% G(©) (z, )} is non-vanishing, which means
that there exists a solution of the BSE with pseudoscalar quantum numbers. Moreover, since
GO (z,y) = GO (z — y), the solution corresponds to one that has vanishing total momentum
after transforming to momentum space.

The key observation here is that, even after the effective action is truncated to some loop
order, as long as the truncated action is invariant and both the quark self-energy and the meson
BSE kernel are derived by taking functional derivatives of it, Goldstone’s theorem will hold
without fine tuning. We finally note that the arguments given here translate identically to any
global symmetry of the effective action.

3.83. Tri-local: Three-body bound-states

The extension of the above formulae to the three-body bound state case is rather straightforward
[70] if one adds to the partition function a source term for the trilocal operators of interest,
RF (2,y,2)VE,(z,y,2). After a Legendre transformation, the effective action acquires an
explicit dependence on the three-body vertex V. Note that depending on whether source terms
for the proper tri-vertices of the theory are added or not, one is dealing with the 2PI or the 3PI
effective action, supplemented with an extra vertex for the three-body bound state.
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Focusing here on the case of a baryonic bound state, we introduce sources R and R for the
operators V. = . (2)1s(y)¢e(z) and V. = 9, (2)1s(y)Ye(2), respectively. Using the stability
arguments laid above for a would-be solution V(©) of the stationary condition 6T' /0V =0 then
lead to the following three-body bound state equation (see [70] for a detailed derivation)

ST, G,V
/d4l’/d4y/d42/ _ [ 7G7 ] A‘/}'s/t/(flfl,y/,zl) —0. (35)
Vorst(2,y,2)0 Vg (2,4, 2') | =) v =y ©

Note that only mixed derivatives with respect to V and V do not vanish identically when one
sets V=V and V = V(O).

It is important to comment here that for the important cases of mixed quark-flavour states,
and indeed mixed states in general, the procedure just outlined proceeds identically, only with
the introduction of mixed propagators and vertices. Generally speaking, one could say that for
each bound state of interest, one inserts the appropriate vertex in the effective action, takes
functional derivatives with respect to it, and sets it to its vacuum value at the end. The fact
that for flavour-diagonal mesons this vertex coincides with the quark propagator is therefore
merely accidental.

4. Internal structure: form factors
The prototypical experiment for probing the internal structure of hadrons consists of (in)elastic
scattering of a particle on a hadron. Such interactions are mediated by gauge fields, thus the
theoretical study of hadrons must couple gauge fields so that relevant symmetries are preserved,
as well as maintaining internal consistency of the theoretical framework. At the level of Green’s
functions, a method coined gauging of equations exists that ensures current conservation [74-76].
The method of gauging can be best understood through the introduction of a new source
term in the partition function, —J#(x)A,(z), where A" is the external, non-dynamical gauge
field and J* is the current that couples to it. For example, consider the 2n-point fermionic
Green’s function

GO (zy . gyl al) = (0T [ (z1) . . ™ (@) (&) .. " (2),)] 0) - (36)

Then, its coupling to an external gauge field A, would be

GOH(ay il i) = (O [ (@1) . " ()8 (2) . B )T )] [0), (37)

which is called the gauged Green’s function. It can be obtained by applying a functional
derivative with respect to A" to the original Green’s function (we drop from now on the
superindices indicating the number of particles)

o
w7
G 5AuGA:o’ (38)

and setting the external field to zero. It hence follows the ordinary rules for derivatives when
acting, for instance, on products of functions. The proper n-body vertex, J*, for the coupling
of the n-body system to the field A, is defined as

GH = GoJ"Gy . (39)

with Gy again the product of full propagators. In particular, for n = 1 this defines the proper
(fermion-photon) vertex I'*

St = STHS | (40)
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Figure 1. Gauging of the three-body kernel, K*, as illustrated in (49). Note the minus sign
which prevents the over counting of diagrams.

as a result of gauging the full propagator G = S. A useful relation follows from gauging
(SS~1)* and using the identity 1# = 0

i e e L e L (41)

For the following it is in general more convenient to work with the amputated Green’s
function, i.e. the scattering matrix 7' defined in (6). Consider then a hadron described by
the following Dyson equation

T=K+KGT, (42)

with K the interaction kernels derived using the prescriptions given above. We can gauge this
equation, following the rules of differentiation, to obtain

T“:K“—FK“GQT-FKGST—FKG()T“ , (43)
which can be rewritten using (7) as

T" = (1 — KGo) " (K" + K*GoT + KGKT)
=T (K 'K'K™'+GH)T . (44)

At the bound state poles, one can introduce a bound-state electromagnetic current J* in a
similar fashion as in (8)

vy Vi

T+ ~ J :
P+ M?" P} + M?

(45)
where M; y and V¥; ; are the initial and final bound-state masses and amplitudes, respectively.
From (44), (9) and (10), we arrive at

J“Z\i’f (G5+GOK“G0)Wi . (46)

Many of these details can be illustrated with a three-body system. Then, Gy is the product
of three full propagators .S and thus its gauged analogue generates three impulse-like diagrams

Gg = (5'15253)“ = SfSQSg + 515553 + Slsgsg = leSQSg + 51)(553 + S152X§ . (47)

Here y* = STT#S% and the superscripts 4, f denote that the propagators are evaluated before
and after the momentum injection from the external field. The interaction kernel K must be
decomposed into the sum of its two- and three-particle irreducible terms

K= Z KopnS~' + Kpr) - (48)

perm.
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Then, using (41) its gauged version is

g1
KM = Z K{yppy S~ = Z Kpnx" + Klypy - (49)

perm. perm.

It is interesting to note how the gauging procedure has automatically introduced a relative sign
between those terms in which the external field interacts with the spectator line and those in
which it interacts with the irreducible kernel; this ensures the absence of the over counting of
diagrams [75,76]. The irreducible kernels themselves must be gauged once they are expressed
in terms of the elementary degrees of freedom. A diagrammatic representation of this equation
is shown in Fig. 1.

The application to two-body states is entirely analogous, with the simplification that K* in
(46) is directly the gauged two-particle irreducible kernel, K éPI). Also, the generalisation to the

coupling of two external fields by gauging twice has been presented in [77,78].

5. Application to QCD
In this section we apply the previously introduced formalism to QCD and derive the quark self-
energy, quark-gluon vertex and meson Bethe-Salpeter kernel from the truncated 2PI and 3PI

effective actions.

Figure 2. The terms of the 3PI effective action at 3-loop relevant to the quark, quark-gluon
vertex and meson Bethe-Salpeter kernel.

Ml»—-
w\»—
N»—-

5.1. 3PI Effective Action
As an example, let us derive the quark self-energy, quark-gluon vertex, and meson Bethe-Salpeter
kernel from the 3PI effective action at three-loop order. We start with the effective action, given
in Fig. 2, wherein we have kept only those terms relevant to the discussion at hand. Note
also that at least a three-loop expansion is required in order to obtain, upon the inclusion of a
baryonic vertexr in the effective action, a non-trivial baryon BSE kernel.

The quark self-energy is given by (28), while solving the stationary condition
oT'(¥, G, V]/6V), = 0 gives the quark-gluon vertex DSE

5Gab
ﬂ 0
oW, G,V _ g
amen o A A A D
ab G=GO) V=V
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In the second line of Eq.(50) we have used the vertex DSE (51) to simplify the form of the
self-energy contribution. Note that in doing so, the self-energy is no longer a function of V,
but rather V() which now implicitly depends upon the quark propagators G. Thus, if the BSE
kernel is obtained by a further functional derivative of the simplified self-energy, the functional
dependence of V(© on G must be resolved.

Thus, we use the first line in Eq. (50) to derive the Bethe-Salpeter kernel. Taking one further
functional derivative of the quark self-energy with respect to the quark (which diagrammatically
amounts to cutting one quark line) yields

e Y AT AR

= - + , (52)

where we can once again use the quark-gluon vertex DSE (51) to simplify the kernel in the last
step.

It is interesting to note here the appearance of a ladder exchange that features two dressed
vertices. Additionally, at this order in the truncation the doubly-dressed gluon exchange must
necessarily be accompanied by a crossed-ladder exchange in the BSE kernel in order to preserve
chiral symmetry and any other global symmetries of the system.

5.2. 2PI Effective Action

It is enlightening to compare the 3PI effective action at 3-loop to the 2PI effective action at the
same order. We can read this off from Fig. 2 by replacing the dressed vertices with bare ones.
Then, the quark self-energy is

Y= zaFECibG & m+m—
ﬁ (53)

from which the quark-gluon vertex can be inferred

~ A A A A o

In a similar fashion to the above, we can write down the corresponding Bethe-Salpeter kernel
by taking one further functional derivative of the quark self-energy with respect to the quark

10
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(resolving the quark dependence of the vertex if needs be) to find

E’f +

i

This truncation is essentially the one employed in Refs. [79,80]; the application to baryons is
reported in Ref. [61].

Notice here that (55) is structurally quite different from (52) in that the ladder exchanges
always contain one perturbative vertex; this could be remedied by including, for example, 4-loop
terms in the 2PI effective action.

All of this can be compared to the rainbow-ladder truncation which follows from the 2PI
effective action at two-loop order. Then only the two-loop terms (with vertices bare) of Fig. 2

are required, yielding
E = — & y —K = . (56)

Note that only this simplistic truncation lacks the flavour dependence that the two-body kernel
necessarily features (due to implicit and explicit dependence on the quark propagator). To make
such a truncation viable, the bare vertices are renormalisation-group improved (i.e. dressed such
that perturbative anomalous dimensions are recovered). This accounts for the lack of interaction
strength provided by a single gluon-exchange, and is important for both phenomenology and
chiral dynamics.

6. Some technical remarks
We comment in this last section upon some technical aspects that must be taken into account
when attempting to solve, in practice, the DSE/BSE system.

6.1. Covariant decomposition of amplitudes

The quantum numbers, such a spin, parity, etc. of the bound state to be studied can be
enforced by restricting the tensor structure of the Bethe-Salpeter amplitudes to have the correct
symmetries for these quantum numbers.

For the description of a two-fermion bound-state, we need to provide a covariant
decomposition ¢§ - The spinor indices of the two fermions are «, 8, while for total spin J, Z is
a product of J Lorentz indices. For spin J = 0 it is well-known that a suitable representation
s [81,82]

1, ¥, Al yligrafl legrypyel (57)
that is often simplified through the introduction of ~5. Saturating these with the quark relative

momentum k* and imposing positive parity yields D; = {1, ¥}. Then, the general decomposition
for a state of zero spin is

T(k, P) = ( 715 >Di A (58)
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Here, the first term selects the overall parity of the state and Ay = (]l + ﬁ) /2 is
a positive/negative energy projector that introduces the (normalised) total bound-state
momentum P. To introduce total angular momentum .J, we couple the spin-zero state I' to
the two possible angular momentum tensors Q#1#J and THHJ
- QHImHJ
rut-p (g, P) = TH1-ts I'(k,P). (59)
These tensors are given by the traceless part of the symmetrised J-fold tensor products of a
transversal projector transforming like a vector [83].
It is convenient to introduce the transverse projector T}’.fy = §" — PP /P? and to denote

its application using subscripts as follows: kf. = TRk ») = TEYTR~". If we define the
symmetrised J-fold tensor products

Qmm/u — ki{f‘l o ké‘;’} ’ TR — ,y);{l‘lkél} . k;‘]} ’ (60)

then the angular momentum tensors Q17 and TH!#J are the traceless part thereof [19,24,84].
To describe a three-fermion bound-state we need to provide a covariant decomposition for
1/% By The spinor indices a, 3, correspond to the three fermionic legs, while for total spin-k—+1/2,
T is composed of one spinor and &k Lorentz indices.
Let us begin with a spin-1/2 baryon where Z = § carries the incoming baryon spin index.
Saturating the matrices (57) with the two relative quark momenta k* and ¢* and selecting

positive parity gives D; = {]l, Fr.d,, kTgt}. Then

1 &® 1

s Y5 ® s
k,q,P) = D, ® D; A C ® A . 61
waﬁ,w ( q ) 7{110“ ® ,75’1 ( J )( +75 + ) ( )

7:?75 & 7@75

The left tensor product denotes the outgoing quark legs with indices «, [ and hence warrants
the inclusion of 4°C, with C = 4*? the charge conjugation matrix. The right tensor product
describes the outgoing quark leg, index 7y, and the incoming baryon spin-index J; the A here
selects the positive energy baryon. Not all elements are linearly independent; it can be checked
that a linearly independent subspace of 64 elements can be constructed [38,85].

The generalisation to a state of spin-k + 1/2 (with & integer) is obtained by extension of this
basis

ovy... 6
Yoge kg, P) = (( MPreie @ P )y () g PY (62)
75{1 e :}/é{'k'}%
B Lk
M“lm#k — Y’El Ifz‘k’)% (63)
kot -

..qt f75

with M#1-#+ representing all combinations of k products of v4, k4 and ¢}". Here, PH1-Hk¥1--Vk
is the generalised Rarita-Schwinger projector. A linearly independent subspace spans 64(k + 1)
elements. As an example, we give the Rarita-Schwinger projector for spin-3/2

1
PH1VL — Tglyl _ g,yéﬁl,y;l , (64)

where note that we omitted the here redundant positive energy projector A, . In this case 128
linearly independent basis-elements can be constructed [42].
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Alm (p2)

4
N

Figure 3. A sketch of the bounded parabolic region of the complex plane probed by the
quark propagators in the Bethe-Salpeter equation. Crosses symbolise the appearance of complex
conjugate poles in the timelike complex region.

6.2. Fuclidean spacetime and quarks in the complex plane

Calculations using DSEs and BSEs are mainly performed in Euclidean momentum space (for
studies using Minkowski spacetime see [86,87] and references therein). In particular, this means
that for a bound state of mass M, the total momentum P in the rest frame is

P =(0,0,0,i M) . (65)

Let us focus, for simplicity, on the case of a mesonic bound state. If the relative momentum
between the constituent quarks is k, the momentum of the constituents can be written as

P
pr=k=E 7 (66)
The propagators for these constituents are functions of p3. Using (66) and assuming that the
relative momentum k is real, one can see that

pi = (t+i M) (67)

for some real and positive parameter ¢. This is the parametric equation for a parabola. Therefore,
the quark dressing functions need to be known in a parabolic region of the complex plane
(see Fig. 3). It is a general feature of the analytic structure of the quark propagators in the
complex plane to have complex conjugate poles in the timelike complex region. These poles
pose a limitation on the maximum mass of the bound state that can be calculated as well as
the spacelike region for which form factors can be studied (see, e.g. [88]). The possibility of
parametrising the quark propagators by analytic functions that allow better control over its
singularities has been explored, e.g. in [48,89,90].

7. Conclusions

In these proceedings we have collected the key aspects for a systematic study of hadronic
properties such as masses and form-factors using the combination of Dyson-Schwinger and Bethe-
Salpeter equations. The use of nPI effective action techniques proves to be a powerful resource
in this respect.

It should be clear from the presentation that the now ubiquitous rainbow-ladder truncation
is the first term in a systematic expansion of the Bethe-Salpeter kernel using the effective action;
in particular it appears when a renormalisation-group improved (RGI) 2PI effective action at
two-loops is used. Present investigations [61] are aimed at extending the calculation of meson
and baryon spectra using kernels derived from a three-loop truncation of the effective action.
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