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Abstract. The possibility of generating neutrino masses and oscillations through Lorentz-
violating models is investigated. In the first model, an interaction between a fermion doublet
and a Lorentz-violating gauge field, which play the role of a regulator field and, eventually,
decouples from the fermions, is considered. In this case, by solving the (non-perturbative)
Schwinger-Dyson equation, we show how masses and oscillations are generated dynamically.
In the second model, fermions with LV kinematics interact via a four-fermion interaction and
masses are shown to be generated dynamically when using another non-perturbative method.
In both models, the recovery of Lorentz invariance is discussed and it is shown that the only
physical observables are the dynamical masses that lead to neutrino oscillations.

1. Introduction

The discovery of a Higgs-like scalar particle has been made recently by experiments at the Large
Hadron Collider [1] and, as a consequence, the generation of masses for most of the known
particles due to their coupling to the Higgs field seems now to be confirmed. An exception to
this, however, comes from the fact that the origin of neutrino masses is still not well understood,
although the seesaw mechanism seems the most elegant and simple for such a purpose [2]. On
the other hand, seesaw mechanisms require right-handed sterile neutrinos which have not yet
been discovered in Nature [3].

Thus, in this paper, we present two alternative ways, based on Lorentz-violating (LV) theories,
to generate dynamically neutrino masses and, consequently, flavour oscillations. In both cases,
LV higher-order space derivatives suppressed by a large mass scale M are added to the “usual”
models, but the number of time derivatives is not altered, in order not to generate ghosts.

In the first model, we consider two massless bare fermions interacting with an Abelian gauge
field, which has a LV propagator. The mass scale M introduced together with the LV operator
allows the dynamical generation of fermion masses, as was shown in [4] with the Schwinger-Dyson
approach and also leads to a finite gap equation, regulating the model. Moreover, Lorentz-
violating gauge models of the form suggested in [4] can arise in the low-energy limit of some
quantum gravity theories [5].

An important feature of our results is the structure of the dynamical fermion mass [4], i.e.

mdyn ≃M exp(−a/e2) , (1)

where a is a positive constant and e the coupling constant. Such a dynamical mass solution,
being non-analytical in e, can only be obtained by means of non-perturbative approaches, such
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as the Schwinger-Dyson derivation of a gap equation used in [4] and here. In addition, it is
possible to take the simultaneous limits

M → ∞ and e→ 0 , (2)

in such a way that the dynamical mass (1) remains finite, corresponding to a physical fermion
mass. In this limit, the gauge field decouples from the fermion fields and the former plays the
role of a LV regulator field. This procedure is consistent with the string-embedding case of [5]
in the limit where the density of D-particles vanishes and then Lorentz symmetry is recovered.

In the second case, we consider new LV kinematics for a four-fermion interaction model.
The kinematics however are not the same as in Lifshitz-type models (see [6] for a review), and
our present mechanism involves “quasi-relativistic” fermions, in the sense that, their dispersion
relations differ from the relativistic case only in an intermediate energy regime governed by M ,
whereas are almost relativistic in both the infrared (IR) and the ultraviolet (UV) regions.

In addition to the quasi-relativistic kinematics, this model allows the dynamical generation of
mass from a four-fermion interaction, however small the coupling strength is. This feature allows
us to consider the limit where the couplings gi → 0 and the mass scaleM → ∞, i.e. the Lorentz
symmetric limit. This is not the case for usual Lorentz symmetric four-fermion interactions,
where critical couplings are naturally defined by the gap equation (see for example the Nambu-
Jona-Lasinio model [7] - NJL). Nevertheless, Lifshitz four-fermion interaction models also allow
dynamical mass generation for any coupling strength [8], but in such models, fermions have a
dispersion relation which implies a large deviation from relativistic kinematics in the UV.

A non-trivial consequence of this model in contrast to our first model is the analytic properties
of the dynamical mass, as a function of the coupling constant. Therefore, although we make use
of a non-perturbative approach to calculate the dynamical mass, an expansion of the present
result in the coupling constant could be obtained by one-loop calculation.

In general, neutrino oscillation models contain massive particles, but oscillations involving
massless particles have been studied in [9] and also in the framework of LV models in [10]. Whilst
these studies have been questioned by phenomenological constraints [11], our present models,
based on higher order space derivatives, are not excluded.

Finally, we stress here an essential feature of the mechanisms described for both models.
Although LV operators are suppressed by a large mass scale M and therefore the corresponding
effect is negligible at the classical level, quantum corrections completely change this picture,
leading to finite effects. The finite effects here are the dynamical generation of fermion masses
and consequently flavour oscillations, which are present even when the LV-suppressing mass
scale M is set to infinity and the couplings to zero. Note that the order of the steps followed
is important: quantization is done for finite mass M and couplings ei and only afterwards the
Lorentz symmetric limit is taken.

This paper is organized as follows. In the next section, the first model is considered. By
making use of the Schwinger-Dyson equation for the fermion propagator the corresponding gap
equations which must be satisfied by the dynamical masses are derived. Then considering the
constraints arising from the gap equations, we calculate the dynamical masses for different cases.
Finally, in the last subsection of section 2, the “Lorentz-Invariant limit” is discussed, in which the
LV gauge field decouples from fermions, and we demonstrate that relativistic dispersion relations
for fermions are indeed recovered. After that, in the section 3, the second model is presented.
After discussing a few of its classical properties, we show how the fermion masses are generated
by quantum corrections for any coupling strength gi. In addition, exploring the fact that masses
are generated dynamically independent of the coupling strength, we consider the possibility of
taking the Lorentz symmetric limit in such a way that the dynamical masses are finite and
then we show that this limit does not spoil the theory, since the quantum corrections to the
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fermion self-energy and oscillation probability are kept Lorentz invariant. Finally, conclusions
and outlook are presented in section 4.

2. Model I

The first LV model we consider is [12]

L = −1

4
Fµν(1−

∆

M2
)Fµν + Ψ̄(i/∂ − τ /A)Ψ, (3)

where Fµν is the usual Abelian field strength for the gauge field Aµ, ∆ = −∂i∂i and M is the
mass scale that suppresses the LV derivative operator ∆, and can be thought of as the Plank
mass, however, it will eventually be set to infinity. Ψ is a massless fermion doublet Ψ = (ψ1, ψ2)
and the flavour mixing matrix τ features the gauge couplings (e1, e2, ǫ) as

τ =

(

e1 −iǫ
iǫ e2

)

. (4)

The Lagrangian (3), as already pointed out, can be derived from a stringy space time foam
model, as shown in [5].

The gauge field bare propagator is

Dµν = − i

1 + ~p2/M2

(

ηµν
ω2 − ~p2

+ ζ
pµpν

(ω2 − ~p2)2

)

, (5)

where ζ is a gauge fixing parameter. Nonetheless, as we will see in the next sections, ζ does not
play a role when the simultaneous limits M → ∞ and e1, e2, ǫ → 0 that leave the dynamical
masses finite are considered.

It is worth mentioning at this point that, although previous works, such as [13] and [14],
have shown that the flavour mixing interaction Ψτ /AΨ can be at the origin of a dynamically
generated gauge boson mass, in the present study, this possibility is disregarded, since, as it will
be demonstrated below, the flavour mixing coupling ǫ vanishes necessarily for the consistency
of the model when fermion oscillations are dynamically generated.

The bare fermion propagator is S = i/p/p2, where pµ = (ω, ~p). Finally, assuming the
dynamical generation of the following fermion mass matrix

M =

(

m1 µ
µ m2

)

, with m± =
m1 +m2

2
±
√

(m1 −m2)2 + 4µ2

2
, (6)

where m± are the mass eigenvalues, and neglecting other quantum corrections, the dressed
fermion propagator G is given by

G = i
p2 + /p(m1 +m2) +m1m2 − µ2

(p2 −m2
1)(p

2 −m2
2)− 2µ2(p2 +m1m2) + µ4

(

/p−m2 µ
µ /p−m2

)

. (7)

At this point, before performing any calculation, it is important to remember which conditions
must be satisfied so that flavour oscillations can take place. First, we should remember that the
flavour eigenstates (ψ1,2) are connected to the mass (energy) eigenstates (ψ+,−) by a unitary
transformation, parametrized by a mixing angle θ, i.e.

(

ψ1

ψ2

)

=

(

cosθ sinθ
−sinθ cosθ

) (

ψ+

ψ−

)

(8)
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and if at an initial time t = 0 a flavour neutrino ψ1(t = 0) is produced then, in general, the
probability of obtaining the other flavour ψ2(t) at t > 0 is nontrivial and given by [15]

P12(t) = sin2(2θ) sin2
[

(E+ − E−) t

2

]

, (9)

where E+,− represent the energy eigenvalues. Therefore, from (9) one notes that oscillations
can only occur in case there is a nontrivial mixing angle θ 6= 0 and, at the same time, the energy
levels are different E2

+ 6= E2
−. In particular, as will be useful later, assuming massive relativistic

neutrinos for which the dispersion relation is E =
√

~p2 +m2, (9) can be rewritten as

P12 ≈ sin2(2θ) sin2
[

(m2
+ −m2

−) L

4E

]

, (10)

where m+,− are the mass eigenvalues and L the distance between the source and detector.
In the next section, we will check that the dynamical masses m1,m2, µ assumed here can

indeed be generated by quantum corrections, using the Schwinger-Dyson approach.

2.1. Schwinger-Dyson Gap equations

The Schwinger-Dyson equation for the fermion propagator has the usual structure [16], not being
modified by the LV term in (3). Neglecting corrections to the wave functions, the vertices and
the gauge propagator, the Schwinger-Dyson equation reads for our model

G−1 − S−1 =

∫

p
Dµν τγ

µ G τγν . (11)

Due to the presence of the LV term in the denominator of the gauge field propagator (5), the
loop integral in (11) is finite.

The Schwinger-Dyson equation above leads to four gap equations, which must be satisfied by
the three masses m1,m2, µ:

m1

4 + ζ
= (e21m1 + ǫ2m2)I1 + (µ2 −m1m2)(e

2
1m2 + ǫ2m1)I2 (12)

m2

4 + ζ
= (e22m2 + ǫ2m1)I1 + (µ2 −m1m2)(e

2
2m1 + ǫ2m2)I2

µ

4 + ζ
= µ(e1e2 − ǫ2)[I1 − (µ2 −m1m2)I2]

0 = ǫ(e1m1 + e2m2)I1 + ǫ(µ2 −m1m2)(e1m2 + e2m1)I2 ,

where after integrating over the frequency ω and momentum ~p, and expanding the results so
that M >> m1,m2, µ, the expressions I1 and I2 become

I1 ≃
1

16π2
1

A2
+ −A2

−

[

A2
− ln

(

A2
−

M2

)

−A2
+ ln

(

A2
+

M2

)]

and I2 ≃
1

16π2
1

A2
+ −A2

−

ln

(

A2
−

A2
+

)

, (13)

with

A2
± =

m2
1 +m2

2 + 2µ2

2
±
√

(m2
1 −m2

2)
2 + 4µ2(m1 +m2)2

2
. (14)

Furthermore, the four equations in (12) are not independent and must be satisfied by only
three unknowns m1,m2, µ. In order to find the solutions in a more efficient way, we make use
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of the following constraints which can be easily derived from (12). Considering the first two
equations, for e21e

2
2 6= ǫ4, we have

I1 =
1

4 + ζ

e22m
2
1 − e21m

2
2

(e21e
2
2 − ǫ4)(m2

1 −m2
2)

(15)

(µ2 −m1m2)I2 =
1

4 + ζ

m1m2(e
2
1 − e22) + ǫ2(m2

2 −m2
1)

(e21e
2
2 − ǫ4)(m2

1 −m2
2)

,

and the third and forth equations lead to the following constraints respectively

µ(m1 +m2)(e2m1 + e1m2)(e1 − e2) = 0 and ǫ(e2m1 + e1m2) = 0 . (16)

According to the constraints above, we are left with few possibilities to study in the next section.

2.2. Solutions of the Gap Equations - Dynamical Fermion Masses and Mixing

In what follows, by making choices that satisfy the constraints (16), we focus on different
solutions to the gap equations (12) which allow for µ 6= 0 (non-vanishing mixing angle), which
according to (9) is a necessary, but not sufficient condition, for flavour oscillations.

2.2.1. The case m1 = m2 = 0 and µ 6= 0: In this case, the mass eigenvalues and eigenstates
are, respectively,

m± = ±µ , and ψ± =
1√
2
(ψ2 ± ψ1) (17)

such that the mixing angle (8) is θ = −π/4, in our conventions. No oscillations (10) among the
fermion flavours are allowed in such a case, since m2

+ = m2
−.

Among the gap equations (12), only the third is not trivial, and leads to

1

4 + ζ
= (e1e2 − ǫ2)(I1 − µ2I2) . (18)

Since A2
± = µ2, the expressions (13) become

I1 ≃
−1

16π2

(

1 + ln

(

µ2

M2

))

, and I2 ≃
−1

16π2
1

µ2
, (19)

and we finally obtain

µ ≃M exp

(

−8π2

(4 + ζ)(e1e2 − ǫ2)

)

, (20)

which, as expected, is non-analytic in the coupling constant and, therefore, could not be found by
perturbative methods. Note that for this solution have a meaning it is necessary that e1e2 > ǫ2,
otherwise µ2 > M2.

2.2.2. The case e2m1 + e1m2 = 0 and m2
1 6= m2

2: In this situation, since the first equation (15)
leads to I1 = 0, the expression (13) for I1 implies that

A2
+ = A2

− = exp(−1)M2 , (21)

which can not be considered physical, because the dynamical masses are then necessarily of the
order M . This possibility should therefore be disregarded, specially because we will eventually
take the limit M → ∞.
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2.2.3. The case m1 = −m2 6= 0: It can be seen from eqs.(12) that to have m1 = −m2 ≡ m,
it is necessary that e1 = e2, such that both constraints (16) are satisfied. Also, in such a case,
eqs.(12) become

1

4 + ζ
= (e2 − ǫ2)[I1 − (µ2 +m2)I2] , (22)

with A2
± = m2 + µ2, such that we find

m2 + µ2 =M2 exp

(

−16π2

(4 + ζ)(e2 − ǫ2)

)

, (23)

which has a physical meaning only if e2 > ǫ2. Moreover, this condition allows one to consider
the limit ǫ→ 0 without affecting the mass eigenvalues or mixing angles (see below). Therefore,
as long as ǫ can be set to zero, no dynamical generation of vector boson masses is allowed, as
already mentioned.

Once again, flavour oscillations do not take place because the energy eigenvalues are the
same. The mass eigenvalues and mixing angle θ (8) are given by

m± = ±
√

m2 + µ2 , tan θ =
−µ

m+
√

m2 + µ2
, (24)

whereas the mass eigenstates are

ψ± =
1

N±

(

ψ1 +
µ

m±
√

m2 + µ2
ψ2

)

with N2
± =

2m2 + 2µ2 ± 2m
√

m2 + µ2

2m2 + µ2 ± 2m
√

m2 + µ2
. (25)

2.2.4. The case m1 = m2 6= 0, Dynamical Flavour Oscillations: We find here from eqs.(12)
that necessarily e1 = e2 = e, ǫ = 0 and µ2 = m2 which implies that

µ2 = m1m2 = m2 and I1 =
1

(4 + ζ)e2
. (26)

Then, noting that, in this case, A2
− = 0 and A2

+ = 4m2, the dynamical mass is

m =
M

2
exp

(

− 8π2

(4 + ζ)e2

)

(27)

which, as expected, is not perturbative in e. In this situation, the mass matrix has identical
elements and, as a consequence, different eigenvalues

m+ = 2m =M exp

(

− 8π2

(4 + ζ)e2

)

, m− = 0 , (28)

and the corresponding mass eigenstates are the same as the eigenstates given by eq.(17). The
mixing angle (8) is θ = ∓π/4, depending on the sign of µ = ±m, respectively.

Therefore, from what we saw above, i.e. m2
+ 6= m2

− and θ 6= 0, we note that because of
the constraints (16), this is the only case in the present model (3) where non trivial oscillations
among fermion flavours take place. Furthermore, in this case necessarily ǫ → 0, avoiding the
dynamical generation of gauge boson masses, and thus the latter play a consistent role as a
regulator field.
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2.3. Lorentz symmetric limit

In this section, we investigate what happens when Lorentz invariance is then recovered after
quantisation and dynamical mass generation. In order to recover Lorentz invariance, we take
the simultaneous limits

M → ∞ and e1, e2, ǫ→ 0 , (29)

in such a way that the dynamical masses are finite. This procedure does not depend on the
gauge parameter ζ and the resulting fermion mass is set to any desired value.

Apart from setting the dynamical mass generation, we want to know whether the theory
is indeed well-behaved in the limit (29) so that unwanted LV effects do not appear. To check
this, we calculate the one-loop corrections to the fermion dispersion relation in the limit (29).
We focus here for concreteness on the solution presented in subsection 2.2.4, with µ = +m,
but clearly the same conclusion holds for all the other solutions studied above. Because one
of the eigenmasses vanishes leading to one-loop IR divergence, we consider m1 = m2 = m and
m− µ = mδ with δ << 1, however, δ will be eventually taken to zero.

To lowest order in momentum, we find then

Σ =

(

Z0
diag Z0

off

Z0
off Z0

diag

)

ωγ0 −
(

Z1
diag Z1

off

Z1
off Z1

diag

)

~p · ~γ −M , (30)

where (ω, ~p) is the external 4-momentum and

Z0
diag =

e2

8π2

(

1

4
− 1

2
ln 2 +

1

2
ln δ + ln

(m

M

)

)

(31)

Z1
diag =

e2

8π2

(

− 1

12
− 1

2
ln 2 +

1

2
ln δ + ln

(m

M

)

)

Z0
off = Z1

off =
e2

16π2
(ln 2− ln δ) .

As expected, due to the Lorentz-symmetry violation nature of our model, Z0
diag 6= Z1

diag, but
since

e2 ln
(m

M

)

= −2π2 , (32)

the limit (29) leads to

Σ → − 1

4
(ωγ0 − ~p · ~γ)1−MR , (33)

whereMR is the “renormalized” mass matrix. Therefore in the limit (29) the dispersion relations
are relativistic and do not depend on δ, such that the limit δ → 0 will not introduce any IR
divergence. Thus, these corrections can be absorbed in a fermion field redefinition, so that we
are left with two free relativistic fermion flavours oscillating.

3. Model II

In this section, in order to study the dynamical generation of mass and oscillations for fermions,
we present a different model consisting in fermion fields with LV kinematics interacting via
four-fermion interactions. First, we assume a massive theory with one flavour only and discuss
some of its classical aspects and then, we consider the massless two-flavour case and the issue
of dynamical mass/oscillation generation.
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3.1. One-flavour case - Massive model and classical properties

The general Lagrangian for the one-flavour case is [18]

L1 = ψ̄

[

i∂0γ
0
(

1− a

M2
∆
)

− i~∂ · ~γ
(

1− i
b

M
~∂ · ~γ − c

M2
∆

)

−m

]

ψ +
g2

M2
(ψψ)2, (34)

where g2 is a dimensionless coupling and the mass scale M is used both to control the LV scale
and the strength of the four-fermion interaction.

The choice of such a Lagrangian is motivated by a gravitational microscopic model, based on
the low-energy limit of a string theory on a three brane universe, embedded, from an effective
three-brane observer view point, in a bulk space-time punctured with point-like defects (D-

particles) [17], for more details see [18]. On the other hand, this model is also compatible with
the the fermionic sector of the Standard Model Extension [19] when one chooses the coefficients
accordingly.

In what follows, we will assume that m << M . The dispersion relation for the Lagrangian
(34) is

ω2 = m2

(

1 + bp2/(Mm)

1 + ap2/M2

)2

+ p2
(

1 + cp2/M2

1 + ap2/M2

)2

. (35)

For all the values of a, b, c, the Lorentz symmetric limit is recovered when M → ∞, at fixed p
and m. In particular, we are interested in the case where a 6= 0 and c 6= 0. In this situation, in
the IR and UV regions the dispersion relation is relativistic, however, in the intermediate regime
p ∼M it is not.
If we impose ω to be an increasing function of p, the different constants in the model (34) must
satisfy

2b2 + 4c ≥ a+ 2abm/M , (36)

and without loss of generality, since our aim here is to give emphasis on the mechanism of
dynamical mass generation, we shall choose a = c = 1. Moreover, as shown in [18], for the case
b = 0 the existence of a non-vanishing dynamical mass requires g to be larger than a critical
coupling. However, in our case, we will eventually take g2 → 0 for the Lorentz-symmetric limit,
therefore, we must have b 6= 0.

The bare propagator S for the model (34) is

S = i
(ωγ0 − ~p · ~γ)(1 + p2/M2) +m+ bp2/M

(ω2 − p2)(1 + p2/M2)2 − (m+ bp2/M)2
. (37)

Then when considering b 6= 0, the trace of S does not vanish even in the massless case m = 0,
which will be important for the analytical properties of the dynamical mass, as explained bellow.
Thus, from now on we assume that a = b = c = 1.

3.2. Two-flavour case: dynamical flavour oscillations

In this section, we take the model given in (34) with a = b = c = 1 and consider its massless
two-flavour case extension:

L2 = Ψ̄

[

i(∂0γ
0 − ~∂ · ~γ)

(

1− ∆

M2

)

+
∆

M

]

Ψ+
1

M2
(ΨτΨ)2, (38)

with

Ψ =

(

ψ1

ψ2

)

, and τ =

(

g1 g3
g3 g2

)

. (39)
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Now, in order to study the possibility of generating fermion masses dynamically, the usual
approach which consists in introducing a Yukawa coupling of fermions to an auxiliary field φ,
integrate over fermions, and look for a non-trivial minimum for the effective potential V (φ),
which leads to a mass term in the original Yukawa interaction, is considered. This approach
neglects fluctuations of the auxiliary field about its vev, but these can indeed be omitted when
τ → 0, once we consider the Lorentz symmetric limit (see below).

The Lagrangian containing the auxiliary field is

L′

2 = Ψ̄

[

i(∂0γ
0 − ~∂ · ~γ)

(

1− ∆

M2

)

+
∆

M

]

Ψ− M2

4
φ2 − φΨτΨ , (40)

for which the integration over φ leads back to the original model (38).
Note that the auxiliary field does not propagate at the tree level and its large mass suppresses

fluctuations of φ about its vev φ0, such that τφ ≃ τφ0 can be identified with the fermion mass
matrix. Because of this, it is enough to consider a homogeneous configuration for φ to calculate
the effective potential and, consequently, its minimum. Nevertheless, it can be shown that φ
can be interpreted as a scalar collective excitation of the original fermionic fundamental degrees
of freedom and its kinetic term is generated by integrating out fermions, in case φ depends on
spacetime coordinates, for further details see [18].

In order to integrate (40) over fermions, we should first calculate the eigenvalues, in flavour
space, of the operator

O =

(

(ωγ0 − ~p · ~γ)(1 + p2

M2 )− p2

M − g1φ −g3φ
−g3φ (ωγ0 − ~p · ~γ)(1 + p2

M2 )− p2

M − g2φ

)

, (41)

which are
m± = (ωγ0 − ~p · ~γ)(1 + p2/M2)− p2/M − h±φ , (42)

where the eigenvalues h± of the coupling matrix τ are given by

h± =
1

2
(g1 + g2)±

1

2

√

(g1 − g2)2 + 4g23 . (43)

The effective potential for the auxiliary field is therefore

V2 =
M2

4
φ2 + i tr

∫

d4p

(2π)4
(lnm+ + lnm−) . (44)

Thus, the minimum of the potential is calculated by assuming that (dV2/dφ)φ0
= 0, leading to

M2

2
φ0 =

∑

s=+,−

hs
π3

∫

p2dp

∫

dω

[

(hsφ0 + p2/M)

(ω2 + p2)(1 + p2/M2)2 + (hsφ0 + p2/M)2

]

, (45)

and the integration over frequencies leads to gap equation below, regularized by the mass scale
M ,

κ
π2

2
=
∑

s=+,−

hs

∫ 1

0

x2dx (hsκ+ x2)

(1 + x2)
√

x2(1 + x2)2 + (hsκ+ x2)2
, (46)

where x = p/M and κ = φ0/M . We solve this integral and expand in κ to find that

κ =
α(h+ + h−)

1− 2(h2+ + h2−)/(5π
2)

+O(κ2) with α =
ln(1 + 2/

√
5)− arctan(1/2)

π2
≃ 0.018 . (47)
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Finally, taking into account that h± << 1, we obtain the minimum of the potential

κ ≃ α(g1 + g2) . (48)

An interesting point to note is that the dynamical mass (48) is analytic in the coupling
constants gi, unlike the situation of Lifshitz 4-fermion interaction [8, 20] which presents
the typical non-analytic form (1). We note however that the expression (48) consists of
a resummation in powers of gi and goes beyond a one-loop calculation. Nevertheless, the
approximate result (48) can be obtained from the usual one-loop correction to the fermion
mass. This feature is specific to the LV propagator (37), whose trace does not vanish, even in
the massless case. We are therefore in the unusual situation where a fermion mass generated
dynamically can be derived using a perturbative expansion, whereas a mass of the form (1) can
be obtained from a non-perturbative approach only.

From the results above, the mass matrix M = κMτ generated dynamically is

M = α(g1 + g2)M

(

g1 g3
g3 g2

)

, (49)

such that the mass eigenvalues m± = κMh± and the mixing angle θ are given by

m± =
α

2
M

[

(g1 + g2)
2 ±

√

(g21 − g22)
2 + 4g23(g1 + g2)2

]

tan θ =
g1 − g2
2g3

+

√

1 +

(

g1 − g2
2g3

)2

. (50)

From this we can express the dimensionless couplings gi in terms of the masses and mixing angle

g1 =
µ+ + µ− + (µ+ − µ−) cos(2θ)

2
√

α(µ+ + µ−)
, g2 =

µ+ + µ− − (µ+ − µ−) cos(2θ)

2
√

α(µ+ + µ−)
, (51)

g3 =
µ− − µ+

2
√

α(µ+ + µ−)
sin(2θ) where µ± =

m±

M
.

This means that the couplings gi have the following form

gi =
ai√
M

, i = 1, 2, 3 , (52)

where the constants ai are completely fixed by the experimental values for m± and θ. The
expression (52) explicitly shows dependence of the couplings gi on the scale M , i.e. gi ∝M−1/2

which means that when the Lorentz symmetric limit M → ∞ is taken, gi → 0 and, therefore,
we are left with two relativistic free fermions, for which flavour oscillations have been generated
dynamically. In this way, any set of values for m± and θ can be described by the Lorentz-
symmetric limit of the present model.

Furthermore, although there is no certainty about the nature of neutrinos, i.e. whether
they are Dirac or Majorana fermions, it is likely that they are Majorana. Thus, in [18], the
authors have studied two simple and consistent ways of extending the present model to the
case of Majorana neutrinos, either by considering only left-handed fields or adding right-handed
sterile fields. In the first extension, it has been shown that neutrino masses and oscillations
can be generated dynamically without the involvement of right-handed. In the second case, a
seesaw-type solution has been found, showing that the mechanism presented in this section can
generate heavy masses for sterile neutrinos which suppress the masses of the light active ones.
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3.3. Lorentz symmetric limit and the oscillation probability

An important point, which differs the present model from other models containing four-fermion
interactions, such as the NJL model, is that, in our case, dynamical mass generation occurs
for any coupling strength, and no critical coupling exists, bellow which this non-perturbative
process does not occur. This feature allows us to take the Lorentz symmetric limit of the model,
M → ∞ which from (52) implies that gi → 0, in such a way that the dynamical mass (1)
remains finite. In this limit, where the product Mg2 goes to a finite value, we are left with free
relativistic massive fermions, for which the mass has been generated by quantum corrections.

Because the model (34) violates Lorentz symmetry, it is expected that space and time
derivatives are dressed differently by quantum corrections. But since a consistent Lorentz
symmetric limit in our case implies g2 → 0, loop corrections to the kinetic terms in the model
(34) eventually vanish in this limit and the theory is therefore well-behaved.

To illustrate this point, we calculate the superficial degree of divergence D of an L-loop graph
Σ(L) contributing to the self energy. Each loop integral measure carries the mass dimension 4
and each propagator (37) has mass dimension -1. The corrections p2/M2 are at most equal to
1, since integrals are regularized by M : they do not play a role for the superficial degree of
divergence. Hence D = 4L − I, where I is the number of internal propagators. Momentum
conservation leads to L = I − V + 1, where V is the number of vertices. Also, since each vertex
has 4 legs, and each internal propagator relates two vertices, we have 4V = E + 2I, where E is
the number of external propagators. As a consequence, we have, as for the usual NJL model,

D = 2L+ 2− E

2
, and V = L− 1 +

E

2
. (53)

In our case though, each vertex brings a factor g2/M2, hence for the self energy (E = 2) we
have

Σ(L) ∝
(

g2

M2

)V

MD =Mg2L . (54)

Taking into account (52) when M → ∞, we finally obtain

Σ(L) ∝
mL

dyn

ML−1
. (55)

The first non-trivial loop corrections to the kinetic terms occur at two loops, since the one-loop
self energy is independent of the external momentum. As a consequence we are interested in
L ≥ 2, and for a fixed dynamical mass mdyn, the property (55) therefore shows that the loop

correction Σ(L) goes to 0 when M → ∞: quantum corrections to the kinetic terms vanish in the
Lorentz symmetric limit.

Finally, we now show that the oscillation probability for the present model is the same as the
oscillation probability for relativistic neutrinos. As already seen, the general expression for the
oscillation probability when considering two flavours is (9). In our case, using the LV dispersion
relation (35) with a = b = c = 1 and considering, as usual, m2

±/p
2 ≪ 1 and m±/M << 1, we

find

(E+ − E−)t =
(m2

+ −m2
−)L

2E
+ (m+ −m−)

EL

M
+O(m2

±/M
2) . (56)

Therefore, the corresponding oscillation probability can be written as

P(νβ1
→ νβ2

) = sin2(2θ) sin2
[

(m2
+ −m2

−)L

4E
+ (m+ −m−)

EL

2M
+ ...

]

, (57)

where the first term gives the usual expression and the second term represents a correction due
to the LV nature of the present model. This second term however goes to zero when M → ∞,
and (57) reduces to the usual relativistic oscillation probability in Lorentz-invariant vacuum, as
expected.
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4. Conclusions

In this article we have shown how neutrino masses and oscillations can be generated dynamically
when considering two distinct Lorentz-violating models.

For the first model studied in section 2, we have considered the coupling of flavoured fermion
fields to LV vector gauge bosons, with Lorentz invariance being violated in the gauge sector
due to the presence of higher order space derivatives suppressed by a mass scale M . In
order to study the possibility of dynamical mass generation we considered the non-perturbative
Schwinger-Dyson approach. Moreover, we have shown that vector boson mass generation can be
avoided by appropriate arrangement of the couplings, so that the LV vector bosons are viewed
as regulator fields, with the only remnant of the LV the dynamical fermion mass. Unfortunately,
the dynamical equations allow neutrino oscillations in only one case when one of the fermion
mass eigenstates is massless, while the other is massive and the mixing angle is necessarily
maximal θ = ±π/4.

Whereas in section 3, we have studied a four-fermion interaction model containing neutral
fermions, representing neutrinos, with Lorentz-violating kinematics. As in the first model,
Lorentz violation is achieved by higher order space derivatives suppressed by a mass scale M .
Using the non-perturbative method of the effective potential, we have shown that neutrino
masses are generated dynamically and remain finite even when the Lorentz symmetric limit
is consistently taken. In contrast to the first model, this one can describe any set of
phenomenological values for the neutrino masses and mixing angles.

The originality of our models therefore consists in generating masses and flavour oscillations
from quantum corrections, which imply finite effects in the IR, even after removing the original
LV regulator. Such procedures are not based on tree level processes and allow to recover the
Lorentz-symmetric limit after quantisation.

An extension of the present works consists in investigating more closely the origin of LV
operators, such as those present in the models discussed here, in the neutrino sector. For this,
we should consider microscopic LV gravitational models coupled to fermions in which the 4-
dimensional diffeomorphism symmetry is broken, as in Horava-Lifshitz Gravity for example [21].

Acknowledgments

The work of J. L. is supported by the National Council for Scientific and Technological
Development (CNPq - Brazil).

References
[1] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214 [hep-ex]];

S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235 [hep-ex]].
[2] P. Minkowski, Phys. Lett. B 67 (1977) 421;

M. Gell-Mann, P. Ramond and R. Slansky. North-Holland. in Supergravity, D.Z. Freedman and P. van
Nieuwenhuizen (eds.) Amsterdam, 1979);

T. Yanagida. in Proc. of the Workshop on the Unified Theory and the Baryon Number in the Universe,
Tsukuba, Japan, 1979, O. Sawada and A. Sugamoto (eds.);

R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44 (1980) 912;
J. Schechter and J. W. F. Valle, Phys. Rev. D 22 (1980) 2227;
For reviews see also: R. N. Mohapatra et al. Rept. Prog. Phys. 70 (2007) 1757 [hep-ph/0510213] and

references therein.
[3] K. N. Abazajian et al., “Light Sterile Neutrinos: A White Paper,” arXiv:1204.5379 [hep-ph].
[4] J. Alexandre, arXiv:1009.5834 [hep-ph];

J. Alexandre and A. Vergou, Phys. Rev. D 83 (2011) 125008 [arXiv:1103.2701 [hep-th]].
[5] N. E. Mavromatos, Phys. Rev. D 83 (2011) 025018 [arXiv:1011.3528 [hep-ph]].
[6] J. Alexandre, Int. J. Mod. Phys. A 26 (2011) 4523 [arXiv:1109.5629 [hep-ph]].
[7] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122 (1961) 345.
[8] D. Anselmi, Eur. Phys. J. C 65 (2010) 523 [arXiv:0904.1849 [hep-ph]];

A. Dhar, G. Mandal and S. R. Wadia, Phys. Rev. D 80 (2009) 105018 [arXiv:0905.2928 [hep-th]];

4th Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE2014) IOP Publishing
Journal of Physics: Conference Series 631 (2015) 012054 doi:10.1088/1742-6596/631/1/012054

12



[9] F. Benatti and R. Floreanini, Phys. Rev. D 64 (2001) 085015 [hep-ph/0105303].
[10] J. S. Diaz, V. A. Kostelecky and M. Mewes, Phys. Rev. D 80, 076007 (2009) [arXiv:0908.1401 [hep-ph]];

J. S. Diaz and A. Kostelecky, Phys. Rev. D 85, 016013 (2012) [arXiv:1108.1799 [hep-ph]].
[11] V. Barger, J. Liao, D. Marfatia and K. Whisnant, Phys. Rev. D 84 (2011) 056014 [arXiv:1106.6023 [hep-ph]].
[12] J. Alexandre, J. Leite and N. E. Mavromatos, Phys. Rev. D 87 (2013) 12, 125029 [arXiv:1304.7706 [hep-ph]].
[13] R. Jackiw, K. Johnson and , Phys. Rev. D 8 (1973) 2386;

J. M. Cornwall, R. E. Norton and , Phys. Rev. D 8 (1973) 3338.
[14] J. Alexandre and N. E. Mavromatos, Phys. Rev. D 84 (2011) 105013 [arXiv:1108.3983 [hep-ph]].
[15] See, for instance, S. Bilenky, Lect. Notes Phys. 817 (2010) 1.
[16] C. Itzykson, J. B. Zuber and , New York, Usa: Mcgraw-hill (1980) 705 P.(International Series In Pure and

Applied Physics)
[17] N. E. Mavromatos, Phys. Rev. D 83, 025018 (2011) [arXiv:1011.3528 [hep-ph]].
[18] J. Alexandre, J. Leite and N. E. Mavromatos, Phys. Rev. D 90, no. 4, 045026 (2014) [arXiv:1404.7429

[hep-th]].
[19] A. Kostelecky and M. Mewes, Phys. Rev. D 85, 096005 (2012) [arXiv:1112.6395 [hep-ph]].
[20] J. Alexandre, J. Brister and N. Houston, Phys. Rev. D 86 (2012) 025030 [arXiv:1204.2246 [hep-ph]].
[21] P. Horava, Phys. Rev. D 79 (2009) 084008 [arXiv:0901.3775 [hep-th]].

4th Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE2014) IOP Publishing
Journal of Physics: Conference Series 631 (2015) 012054 doi:10.1088/1742-6596/631/1/012054

13


