
Boson field mixing in Rindler spacetime

M Blasone1,2, G Lambiase1,2 and G G Luciano1
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Abstract. We study the mixing of two complex boson fields with different masses in Rindler
spacetime. We find that the Bogoliubov transformation associated with field mixing combines
in a non-trivial way with the thermal Bogoliubov transformation associated to the uniformly
accelerated observer (Rindler observer): as a result, the spectrum of Unruh radiation gets
modified.

1. Introduction

Mixing transformations for quantum fields [1] have been found to be non-trivial, since they are
associated to inequivalent representations of the canonical commutation relations [2]. This has
been shown first in the case of Dirac fermions [3] and later for other fields [4, 5, 6]. The reason
for such a somewhat unexpected result resides in the fact that the mixing transformations for
fields with different masses, which are just a rotation at level of fields, actually hide Bogoliubov
transformations at level of creation/annihilation operators. This in turn induces a drastic change
into the vacuum structure, which becomes a condensate of particle/antiparticle pairs.

These studies have been carried out only in Minkowski spacetime. It arises thus the question
how the above structure appears in general frame, and in particular for the case of a uniformly
accelerated observer - Rindler spacetime. In this case, it is well known that the quantization
of a free field leads to Bogoliubov transformations relating the ladder operators for Rindler and
Minkowski observers and giving rise to the celebrated Unruh effect, i.e. the detection of thermal
radiation by a uniformly accelerated observer [7]-[12].

In this paper we consider the quantization of mixed fields in Rindler spacetime in the
simplest case of two boson fields with different masses. Despite of such minimal setting, a
rich mathematical structure arises, due to the combination of the two different Bogoliubov
transformations involved (the one associated to mixing, the other to Rindler spacetime). The
main result of our analysis is a modification of the number spectrum of particles in Unruh
radiation induced by the mixing terms.

In the following we first quantize free fields in Minkowski spacetime in the hyperbolic basis,
in which boost generator is diagonalized. Then we discuss the quantization for a free field in
Rindler spacetime and finally we consider mixed fields for an accelerated observer. A preliminary
result about the correction to Unruh effect due to mixing terms is given.
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2. Field operator in hyperbolic representation

We consider a free complex scalar field φ with massm in a four-dimensional Minkowski spacetime

φ(x) =

∫
d3k

(
ak Uk(x) + ā†

k
U∗
k(x)

)
, (1)

where the operators ak and āk are assumed to obey the canonical commutation relations,

[ak, a
†
k′ ] = [āk, ā

†
k′ ] = δ3(k− k′), (2)

with all other commutators vanishing. These operators can be interpreted as annihilation
operators of Minkowski particle and antiparticle, respectively. The Minkowski vacuum |0M 〉
is defined by

ak|0M 〉 = āk|0M 〉 = 0, ∀k. (3)

The mode Uk(x) in Eq.(1) is a plane-wave of the type

Uk(x) = [2ωk(2π)
3]
− 1

2 ei(k·x−ωkx
0), (4)

where

k = (k1, k2, k3), ωk =
√
m2 + |k|2. (5)

This mode is said to be of positive frequency with respect to the Minkowski time x0, since it
depends on x0 as

Uk(x) ∝ e−iωkx
0

(6)

and it is a solution of the Klein-Gordon equation (we use the metric ηµν = diag(+1,−1,−1,−1))

{(
∂

∂x0

)2

−
3∑

j=1

(
∂

∂xj

)2

+m2
}
φ = 0. (7)

Moreover the modes (4) are normalized with respect to the Klein-Gordon (KG) inner product

(φ1, φ2) = i

∫
d3x

[
φ∗
2(x)

↔

∂0 φ1(x)
]
; (8)

where we have implicitly assumed that the integration is performed on a hypersurface of constant
x0. In fact, we have

(Uk, Uk′) = δ3(k− k′), (U∗
k, U

∗
k′) = −δ3(k− k′), (Uk, U

∗
k′) = 0. (9)

The Hamiltonian and momentum operator are easily expressed in terms of operators (2).
They are, respectively

H =

∫
d3k ωk

(
a†
k
ak + ākā

†
k

)
, k =

∫
d3k k

(
a†
k
ak + ākā

†
k

)
. (10)

Therefore, with the particular choice of the plane-wave basis, the field quanta carry momentum

k and energy ωk. In this basis, however, other physically relevant operators like the angular
momentum, are not diagonal. The diagonalization of the angular momentum is obtained by
expanding the field in the spherical wave basis (see, for example, [13]).
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Now we are interested in the diagonalization of the generator of boosts [12]. We start from
the expression of the generators of Lorentz transformations

M (α,β) =

∫
d3x (xα T (0,β) − xβ T (0,α)). (11)

The generator of boost (for example along the x1 axis) is the (1, 0) component of the above
tensor. Using the standard expression for the stress tensor Tµν

Tµν = ∂µφ
∗ ∂νφ+ ∂νφ

∗ ∂µφ− gµν
(
∂λφ

∗ ∂λφ−m2φ∗φ
)

(12)

and substituting the Minkowski expansion (1) of the field, one obtains [14]

M (1,0) = i

∫
d3k

2ωk

(
c †
k
ωk

∂

∂k1
ck + c̄ †

k
ωk

∂

∂k1
c̄k
)
, (13)

where
ck ≡

√
2ωk ak. (14)

The presence of the k1 derivative shows that the generator of boost in plane-wave representation
is nondiagonal. We then introduce the following operators [12]:

d
(σ)

Ω,~k
=

∫ +∞

−∞
dk1 p

(σ)
Ω (k1) ak1,~k , d̄

(σ)

Ω,~k
=

∫ +∞

−∞
dk1 p

(σ)
Ω (k1) āk1,~k , (15)

where ~k = (k2, k3), Ω is a positive parameter and σ = ± (the physical significance of Ω and σ

will be clarified in Section 3). The function p
(σ)
Ω (k1) in Eq.(15) is given by

p
(σ)
Ω (k1) =

1√
2πωk

(
ωk + k1
ωk − k1

)iσΩ/2

. (16)

It is possible to show that the set of functions
{
p
(σ)
Ω

}
forms a complete orhonormal set, i.e.

∑

σ

∫ +∞

0
dΩ p

(σ)
Ω (k1) p

(σ)∗
Ω (k′1) = δ(k1 − k′1), (17)

∫ +∞

−∞
dk1 p

(σ)∗
Ω (k1) p

(σ′)
Ω′ (k1) = δσσ′δ(Ω − Ω′). (18)

We note that d
(σ)

Ω,~k
and d̄

(σ)

Ω,~k
are linear combinations of the Minkowski annihilation operators

alone. Therefore they also annihilate the Minkowski vacuum,

d
(σ)

Ω,~k
|0M 〉 = d̄

(σ)

Ω,~k
|0M 〉 = 0 , ∀σ, Ω, ~k . (19)

Moreover, by virtue of Eqs.(17), they satisfy the canonical commutation relations,

[d
(σ)

Ω,~k
, d

(σ′)†

Ω′,~k′
] = [d̄

(σ)

Ω,~k
, d̄

(σ′)†

Ω′ , ~k′
] = δσσ′ δ(Ω − Ω′) δ2(~k − ~k′), (20)

with all other commutators vanishing. Because of Eqs.(19) and (20), the operators d
(σ)

Ω,~k
and

d̄
(σ)

Ω,~k
could also be called annihilation operators of a Minkowski particle.

4th Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE2014) IOP Publishing
Journal of Physics: Conference Series 631 (2015) 012053 doi:10.1088/1742-6596/631/1/012053

3



Now, inverting Eq.(15) by use of Eq.(18), we have

ak =
∑

σ

∫ +∞

0
dΩ p

(σ)∗
Ω (k1) d

(σ)

Ω,~k
. (21)

Substituting Eq.(21) into Eq.(13), we find

M (1,0) =

∫ +∞

0
dΩ

∫
d2k

∑

σ

σΩ
(
d
(σ)†

Ω,~k
d
(σ)

Ω,~k
+ d̄

(σ)†

Ω,~k
d̄
(σ)

Ω,~k

)
. (22)

This shows that the new Minkowski particles d
(σ)

Ω,~k
diagonalize the generator of boosts.

Note that, since a boost transformation involves both time and space coordinates, the
Hamiltonian operator preserves its diagonal structure provided that it is expressed in terms
of the new time coordinate (as we shall see later).

Now we want to determine the expression of the modes associated with the operators d
(σ)

Ω,~k
.

For this purpose, let us consider the field expansion (1). After inserting Eq.(21), we obtain

φ(x) =

∫ +∞

0
dΩ

∫
d2k

∑

σ

(
d
(σ)

Ω,~k
Ũ

(σ)

Ω,~k
(x) + d̄

(σ)†

Ω,~k
Ũ

(σ)∗

Ω,~k
(x)
)
, (23)

where

Ũ
(σ)

Ω,~k
(x) =

∫ +∞

−∞
dk1 p

(σ)∗
Ω (k1)Uk(x), (24)

with Uk(x) defined in Eq.(4). The last integral is explicitly solved in Appendix; introducing the
hyperbolic (or Rindler) coordinates (η, ξ), related to the Minkowski coordinates by

x0 = ξ sinh η , x1 = ξ cosh η, −∞ < η, ξ < ∞, (25)

one obtains1

Ũ
(σ)

Ω,~k
(x) =

eσπΩ/2

2
√
2π2

KiσΩ(µkξ) e
i(~k·~x−σΩη), (26)

where KiσΩ(µkξ) is the modified Bessel function of second kind and

µk =
√
m2 + k22 + k23 . (27)

It can be shown that the set of modes
{
Ũ

(σ)

Ω,~k
, Ũ

(σ)∗

Ω,~k

}
is complete and orthonormal with respect

to the Klein-Gordon inner product, i.e.

(
Ũ

(σ′)

Ω′,~k′
, Ũ

(σ)

Ω,~k

)
= −

(
Ũ

(σ′)∗

Ω′,~k′
, Ũ

(σ)∗

Ω,~k

)
= δσσ′δ(Ω − Ω′)δ2(~k − ~k′) ,

(
Ũ

(σ′)

Ω′,~k′
, Ũ

(σ)∗

Ω,~k

)
= 0. (28)

Moreover it is interesting to note that, with respect to the Minkowski coordinates, the conserved
quantity associated to these new field quanta is the relativistic generalization of the so-called
center of mass (see for example [15]).

1 To be precise, we remark that Eq.(26) is valid only on the Rindler manifold R+ ∪ R−, since the coordinate
transformation (25) holds only on these regions. One could also introduce Rindler-type coordinates to cover the
remaining regions of the spacetime (see, for example, [11]), but this is not necessary in our case. The correct
global functions, namely the Gerlach’s Minkowski Bessel modes, are defined in Ref.[16].
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3. From Minkowski to Rindler

The foregoing discussion is completely within the usual framework of theMinkowski quantization.
We now describe an alternative scheme first discussed by Fulling [9] and called the Rindler-

Fulling quantization (note that in this Section we will closely follow Ref.[12]).
For this purpose, we make use of the coordinates (25) (observe that ~x = (x1, x2) is common to
both sets of coordinates). The line element

ds2 = ηµνdx
µdxν = (dx0)

2 − (dx1)
2 −

3∑

j=2

(dxj)
2

(29)

takes the form

ds2 = ξ2dη2 − dξ2 −
3∑

j=2

(dxj)
2
. (30)

We remark that the Rindler coordinates cover only two portions of Minkowski spacetime, namely
the “positive”(or right) Rindler wedge, if ξ > 0:

R+ = {x|x1 > |x0|}, (31)

and the “negative”(or left) Rindler wedge, if ξ < 0:

R− = {x|x1 < −|x0|}. (32)

Since the metric in the Rindler coordinates does not depend on η, the vector

B =
∂

∂η
(33)

with components
Bη = 1, Bξ = Bj = 0, j = 2, 3, (34)

is a timelike Killing vector. Using Eq.(25), it follows that

B =
∂x0
∂η

∂

∂x0
+

∂x1
∂η

∂

∂x1
= x1

∂

∂x0
+ x0

∂

∂x1
, (35)

i.e., B is the boost Killing vector.
In order to understand the physical relevance of the Rindler coordinates, we now consider a

world line such that
ξ(τ) = const ≡ a−1, ~x(τ) = const, (36)

where τ is the proper time measured along the line. Substituting Eq.(36) into the line element
(30), we find that

η(τ) = aτ. (37)

Therefore, for an observer moving along the line (36), the Rindler time η is the same as the
proper time τ up to the scale factor a. Combining this result with Eq.(35), we find that the time
evolution of this observer actually an infinite succession of Minkowski boost transformations.
The hypersurfaces η = const describe events which are simultaneous from the point of view of
this observer. We also note that, by our convention, η(τ) is a decreasing function of τ if a < 0,
which occurs when the world line lies in the negative wedge R−.

Coming back to the Minkowski coordinates, the world line (36) takes the form

x0(τ) = a−1 sinh aτ, x1(τ) = a−1 cosh aτ, ~x(τ) = const. (38)
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x1

x0

Ξ
=

a -1
Η =

const.

R+
R-

P

F Ξ
=

0 ,
Η
=
¥Ξ

=
0 ,
Η
=
-
¥

Figure 1. The proper coordinate system of a uniformly accelerated observer in the Minkowski
spacetime.The hyperbola represents the world line of an observer with proper acceleration a. The
asymptotes x0 = ± x1 appear to this observer as future and past horizonts, respectively. The Rindler
observer cannot receive any signals from the region F and R

−
and cannot send signals to P and R

−
.

Therefore the wedges R+ and R
−
are causally separeted. The regions F and P , however, are not covered

by the proper coordinate system (25).

This is an hyperbola in the (x0, x1) plane with asymptotes x0 = ±x1 (see figure below). Varying
a, we obviously obtain different hyperbolas with the same characteristics. We can think at the
Rindler spacetime as the collection of these world lines.
It is not difficult to show that Eq.(38) represents the world line of an uniformly accelerated
observer with proper acceleration |a| (see, for example, [10]), and this is the reason why Rindler
spacetime is generally regarded as the “natural”manifold in which to describe accelerate motion.
When a is positive, the accelerated observer will be referred to as the Rindler observer.

One may now wonder which is the most important difference between the Minkowski and the
Rindler metrics. About this, we note that a Rindler observer, namely a uniformly accelerated
observer in R+, is causally separeted from R−. In addition he cannot receive any signal from the
future wedge (x0 > |x1|). Therefore, the null hyperplane x0 = |x1| appears to him as a future

event horizon (in the same way, it is easy to show that the null hyperplane x0 = −|x1| appears
to him as a past event horizon). Clearly for a Minkowski observer there is no horizont at all!

In what follows we will also denote the set of coordinates (η, ξ, ~x) by x; therefore the symbol
x refers to a spacetime point, rather than its representative in a particular coordinate system.

After these general considerations about the Rindler metric, we work in the Rindler
coordinates to solve the Klein-Gordon equation (7), which then takes the form

{
1

ξ2
∂2

∂η2
− ∂2

∂ξ2
− 1

ξ

∂

∂ξ
−

3∑

j=2

(
∂

∂xj

)2

+m2
}
φ = 0. (39)

We look for solutions which are of positive frequency with respect to the Rindler time η

u
(σ)
k

=
θ(σξ)

2Ω
√
2π

h
(σ)(ξ)
k

ei(
~k·~x−σΩη), (40)
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where σ = + refers to the positive wedge R+ (Eq.(31)) and σ = − to the negative wedge R−

(Eq.(32)), θ is the Heaviside step function and the subscript k stands for (Ω, ~k). According to
our previous considerations, we remark that the θ function has been inserted in Eq.(40) in order
to restrict these modes to only one of the two causally separeted wedges (R+ for σ = + and R−

for σ = −).

Observe that the reason why we have chosen u
(σ)
k

such that

u
(σ)
k

∝ e−iσΩη (41)

(and not u
(σ)
k

∝ e−iΩη) is that the boost Killing vector B, Eq.(33), is future oriented in R+,
while it is past oriented in R−.

In order to determine the expression of h
(σ)
k

, we substitute Eq.(40) into (39); it follows that

{
d2

dξ2
+

1

ξ

d

dξ
+

Ω2

ξ2
− µ2

k

}
h
(σ)
k

= 0. (42)

This is again solved in terms of modified Bessel functions of second kind; in particular, requiring
that these functions are delta-normalized, one obtains (see [12] for details)

h
(σ)
k

=

√
2

π
A

(σ)
k

(
αµk

2

)iΩ
Γ(iΩ)−1KiΩ(µkξ), (43)

where

A
(+)
k

= R ∗
k

(αµk

2

)−iΩ
Γ(iΩ)/|Γ(iΩ)|, (44)

A
(−)
k

= Rk

(αµk

2

)iΩ
Γ(−iΩ)/|Γ(iΩ)|, (45)

with Rk =
[
(αµk/2)

−iΩ Γ(iΩ)/|Γ(iΩ)|
]2

and α arbitrary postive constant of dimension of lenght.

By using Eq.(43), it is possible to show that the complete set of Rindler modes {u(σ)
k

, u
(σ)∗
k

} is
orthonormal with respect to the KG inner product. To see this, we note that in the Rindler
coordinates Eq.(8) reduces, if the integration is performed on a hypersurface of constant η, to

(φ1, φ2) = i

∫ +∞

−∞

dξ

|ξ|

∫
d2xφ∗

2

↔

∂ η φ1. (46)

By virtue of the h
(σ)
k

normalization, this formula gives

(u
(σ)
k

, u
(σ′)
k′ ) = −(u

(σ)∗
k

, u
(σ′)∗
k′ ) = δσσ′ δ(Ω − Ω′) δ2(~k − ~k′) , (u

(σ)
k

, u
(σ′)∗
k′ ) = 0. (47)

Now we are ready to describe the Rindler-Fulling quantization scheme. For this purpose,
by exploiting the completeness of the Rindler modes, we take the following expansion for the
Klein-Gordon field

φ(x) =

∫ +∞

0
dΩ

∫
d2k

∑

σ

(
b
(σ)
k

u
(σ)
k

(x) + b̄
(σ)†
k

u
(σ)∗
k

(x)
)
, (48)

where the subscript k stands for (Ω, ~k) as discussed above. Observe that, although the Minkowski
expansion (1) holds for all the points of spacetime, the Rindler expansion (48) is valid only in
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the Rindler manifold R+ ∪R−.

The operators b
(σ)
k

and b̄
(σ)
k

are assumed to obey the canonical commutation relations,

[b
(σ)
k

, b
(σ′)†
k′ ] = [b̄

(σ)
k

, b̄
(σ′)†
k′ ] = δσσ′ δ(Ω − Ω′) δ2(~k − ~k′), (49)

with other commutators vanishing. They are called annihilation operators of Rindler-Fulling
particles and antiparticles, respectively. The Rindler-Fulling vacuum |0R〉 is defined by

b
(σ)
k

|0R〉 = b̄
(σ)
k

|0R〉 = 0, ∀σ,k. (50)

To conclude this Section, we observe that, by expressing the Minkowski Hamiltonian (10) in

terms of b
(σ)
k

and b̄
(σ)
k

, we obtain the Rindler-Fulling Hamiltonian HR:

HR = H
(+)
R −H

(−)
R , (51)

where

H
(σ)
R =

∫ +∞

0
dΩ

∫
d2k Ω

(
b
(σ)†
k

b
(σ)
k

+ b̄
(σ)
k

b̄
(σ)†
k

)
. (52)

The minus sign in front of H
(−)
R is due to the fact that B is past oriented in R−. We will have

more to say about HR in the next Section.

4. Unruh effect

Let us now study the connection between the Minkowski and the Rindler-Fulling quantization
schemes. For this purpose we equate the two alternative expansions (1) and (48) for the field on
a spacelike hypersurface Σ which lies in the Rindler manifold R± (for instance Σ may be chosen
to be the hyperplane of constant η). Forming the Klein-Gordon inner product of the field φ

with the Rindler mode u
(σ)
k

and using the orthonormal properties (47), we obtain the thermal

Bogoliubov transformation

b
(σ)
k

=

∫
d3k′

(
α
(σ)∗
kk′ ak′ + β

(σ)∗
kk′ ā†

k′

)
, (53)

where

α
(σ)
kk′ = (u

(σ)
k

, Uk′), (54)

β
(σ)
kk′ = (u

(σ)
k

, U∗
k′) (55)

are the so-called thermal Bogoliubov coefficients. Similarly forming the inner product of φ with

u
(σ)∗
k

, we obtain

b̄
(σ)
k

=

∫
d3k′

(
α
(σ)∗
kk′ āk′ + β

(σ)∗
kk′ a†

k′

)
. (56)

The relation (56) follows from the (53) on interchange of particles with antiparticles, as it should.
The explicit calculation of the coefficients (54) is performed in [12]; it gives

α
(σ)
kk′ =

1

2π
δ2(~k − ~k′) eπΩ/2 |Γ(iΩ)|

(
Ω

ωk′

)1/2(ωk′ + k′1
ωk′ − k′1

)−iσΩ/2

, (57)

β
(σ)
kk′ =

1

2π
δ2(~k + ~k′) e−πΩ/2 |Γ(iΩ)|

(
Ω

ωk′

)1/2(ωk′ + k′1
ωk′ − k′1

)−iσΩ/2

. (58)
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We recall that the first subscript k of α and β on the right-hand side stands for (Ω, ~k) while the

second subscript k′ for (k′1,
~k′).

Substituting Eqs.(57) and (58) into the transformation (53), we can rewrite it into a very
transparent form,

b
(σ)

Ω,~k
=
√
1 +N(Ω) d

(σ)

Ω,~k
+
√
N(Ω) d̄

(−σ)†

Ω,−~k
, (59)

where the operator d
(σ)

Ω,~k
has been defined in Eq.(15) and

N(Ω) = (e2πΩ − 1)
−1

. (60)

We remark that the same result, up to an irrelevant2 global phase factor, can be obtained by
equating expansions (23) and (48) and forming the inner product of both sides with the Rindler

mode u
(σ)
k

. Moreover, by adopting the notation

k = (Ω, ~k) , k̄ = (Ω,−~k) , (61)

it follows from Eq.(59) that

b
(σ)†
k

b
(σ)
k

+ b̄
(σ)

k̄
b̄
(σ)†

k̄
= d

(σ)†
k

d
(σ)
k

+ d̄
(σ)

k̄
d̄
(σ)†

k̄
+N(Ω)

∑

σ

(d
(σ)†
k

d
(σ)
k

+ d̄
(σ)

k̄
d̄
(σ)†

k̄
)

+
√
N(Ω)(1 +N(Ω))

∑

σ

(d̄
(−σ)
k

d
(σ)

k̄
+ d

(σ)†

k̄
d̄
(−σ)†
k

). (62)

Therefore
∑

σ

σ (b
(σ)†
k

b
(σ)
k

+ b̄
(σ)

k̄
b̄
(σ)†

k̄
) =

∑

σ

σ (d
(σ)†
k

d
(σ)
k

+ d̄
(σ)†

k̄
d̄
(σ)

k̄
). (63)

This shows that
HR = M (1,0), (64)

i.e., the Rindler Hamiltonian HR also generates boost. This also could have been predicted from
Eqs.(33) and (35). To be precise, the identity (64) is valid on the Rindler manifold R+ ∪ R−;
therefore HR is the restriction of M (1,0) to R+ ∪R−.

Now, by using the Bogoliubov transformation (59) and recalling that d
(σ)
k

annihilates the
Minkowski vacuum, we can calculate the expected number of the Rindler-Fulling particles in
this state, i.e.3

〈0M | b(σ)†
k

b
(σ)
k′ |0M 〉 = N(Ω) δ(Ω − Ω′) δ(~k − ~k′) . (65)

This equation remains valid if b
(σ)
k

is replaced b̄
(σ)
k

. We thus deduce a striking property: the
expected number spectrum of the Rindler-Fulling particles in the Minkowski vacuum is given
by the Bose distribution function. By using Eq.(60) and recalling that the proper energy of the
Rindler particles seen by an observer with acceleration a is aΩ (since his proper time τ is related
to the Rindler time η by Eq.(37)), we find that

T =
a

2π

(
=

h̄a

2πckB

)
. (66)

2 The phase factor appears to be irrelevant since we are actually interested in the calculation of the expectation
value 〈0M |b

(σ)†
k

b
(σ)

k′ |0M 〉.
3 The divergence in Eq.(65) is due to the fact that the creation operators a

†

k
, b

(σ)†
k

, d
(σ)

(Ω,~k)
do not produce

normalizable states when operated on the appropriate vacua. This can be cured by forming suitable wave packets
and working with properly normalizable states (see [7]).
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In summary, for a uniformly accelerated observer, the Minkowski vacuum is seen to be equiva-
lent to a thermal bath with temperature T proportional to the magnitude of the acceleration.
This temperature is called Davies-Unruh temperature.

5. Mixing of boson fields in Minkowski and Rindler spacetime

Flavor mixing in QFT has been widely analyzed in the last two decades both for fermion [3]
and boson [4] cases. Here we start with the study of the simplest possible case, i.e. the mixing
of two boson fields “seen” by a Minkowski observer. For this purpose, we define the mixing
relations as

φA(x) = φ1(x) cos θ + φ2(x) sin θ , (67)

φB(x) = −φ1(x) sin θ + φ2(x) cos θ , (68)

where generically we denote the mixed fields with suffices A and B and θ is the mixing angle.
φi(x), i = 1, 2, are free complex fields with masses mi. Their conjugate momenta are

πi(x) = ∂0φ
†
i (69)

and the commutation relations are the usual ones:

[φi(x), πj(x
′)]x0=x′0 = [φ†

i (x), π
†
j (x

′)]x0=x′0 = iδ3(x− x′)δij , i, j = 1, 2, (70)

with the other equal-time commutators vanishing. The Fourier expansions of φi(x) are defined in
Eq.(1), while the expansions of momenta can be obtained by Eq.(69). The (Minkowski) vacuum
state is now generalized as

|0M 〉 ≡ |0M 〉1 ⊗ |0M 〉2, (71)

where |0M 〉i is the vacuum state for field with mass mi.
Exploiting the completeness of the sets {Uk,1 , U

∗
k,1} and {Uk,2 , U

∗
k,2}, we can now adopt for

the mixed fields the following expansions

φA(x) =

∫
d3k

(
ak,AUk,1(x) + ā†

k,AU
∗
k,1(x)

)
, (72)

φB(x) =

∫
d3k

(
ak,BUk,2(x) + ā†

k,BU
∗
k,2(x)

)
. (73)

Using the orthonormality condition (9) of the Minkowski modes, it is easy to verify that the
flavor operator ak,A is given by

ak,A = (φA, Uk,1) . (74)

In order to explicitly evaluate this inner product, we substitute Eq.(67) for the mixed field φA.
We then obtain4

ak,A = cos θ ak,1 + sin θ
(
ρk ∗
12 ak,2 + λk

12 ā
†
−k,2

)
, (75)

where the mixing Bogoliubov coefficients ρ̃k12 and λ̃k
12 are given by

ρk12 = |ρk12| ei(ωk,2−ωk,1)x0
, λk

12 = |λk

12| ei(ωk,1+ωk,2)x0
, (76)

4 To simplify the notation, in what follows we will omit the time dependence.
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with

|ρk12| ≡
1

2

(√
ωk,1

ωk,2
+

√
ωk,2

ωk,1

)
, |λk

12| ≡
1

2

(√
ωk,1

ωk,2
−
√

ωk,2

ωk,1

)
. (77)

It can be easily shown that

|ρk12|
2 − |λk

12|
2
= 1. (78)

In a similar way, we can derive the following expressions for the remaining flavor operators

āk,A = −(φA, U
∗
k,1)

† = cos θ āk,1 + sin θ
(
ρk ∗
12 āk,2 + λk

12 a
†
−k,2

)
, (79)

ak,B = (φB , Uk,2) = cos θ ak,2 − sin θ
(
ρk12 ak,1 − λk

12 ā
†
−k,1

)
, (80)

āk,B = −(φB , U
∗
k,2)

† = cos θ āk,2 − sin θ
(
ρk12 āk,1 − λk

12 a
†
−k,1

)
. (81)

The relation (78) guarantees that the operators ak,A, āk,A, ak,B, āk,B also (independently) satisfy
the canonical commutation relations at equal times. In Ref.[4] the above flavor ladder operators
have been derived by means of the algebraic generator of the mixing relations Eqs.(67),(68).

Let us now extend our considerations to the hyperbolic representation. For this purpose, we
expand the fields φi as in Eq.(23). Once again it is possible to exploit the completeness of the

sets
{
Ũ

(σ)

(Ω,~k),i
, Ũ

(σ)∗

(Ω,~k),i

}
and adopt for φA and φB the following expansions

φA(x) =

∫ +∞

0
dΩ

∫
d2~k

∑

σ

(
d
(σ)

(Ω,~k),A
Ũ

(σ)

(Ω,~k),1
(x) + d̄

(σ)†

(Ω,~k),A
Ũ

(σ)∗

(Ω,~k),1
(x)
)
, (82)

φB(x) =

∫ +∞

0
dΩ

∫
d2~k

∑

σ

(
d
(σ)

(Ω,~k),B
Ũ

(σ)

(Ω,~k),2
(x) + d̄

(σ)†

(Ω,~k),B
Ũ

(σ)∗

(Ω,~k),2
(x)
)
. (83)

In order to determine the “new” flavor operators, we perform the same calculation as above.
We find that

d
(σ)

(Ω,~k),A
=

(
φA, Ũ

(σ)

(Ω,~k),1

)

= cos θ d
(σ)

(Ω,~k),1
+ sin θ

∫ +∞

0
dΩ′

∑

σ′

(
d
(σ′)

(Ω′,~k),2
A(σ,σ′)

(Ω,Ω′), ~k
+ d̄

(σ′)†

(Ω′,−~k),2
B(σ,σ′)

(Ω,Ω′), ~k

)
, (84)

d̄
(σ)

(Ω,~k),A
= −

(
φA, Ũ

(σ)∗

(Ω,~k),1

)†

= cos θ d̄
(σ)

(Ω,~k),1
+ sin θ

∫ +∞

0
dΩ′

∑

σ′

(
d̄
(σ′)

(Ω′,~k),2
A(σ,σ′)

(Ω,Ω′), ~k
+ d

(σ′)†

(Ω′,−~k),2
B(σ,σ′)

(Ω,Ω′), ~k

)
, (85)

and similar expressions for d
(σ)

(Ω,~k),B
and d̄

(σ)

(Ω,~k),B
. The Bogoliubov coefficients A(σ,σ′)

(Ω,Ω′), ~k
and

B(σ,σ′)

(Ω,Ω′), ~k
are given by

(
Ũ

(σ′)

(Ω′,~k′),2
, Ũ

(σ)

(Ω,~k),1

)
= A(σ,σ′)

(Ω,Ω′), ~k
δ2(~k − ~k′) ,

(
Ũ

(σ′)∗

(Ω′,~k′),2
, Ũ

(σ)

(Ω,~k),1

)
= B(σ,σ′)

(Ω,Ω′), ~k
δ2(~k + ~k′), (86)
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with

A(σ,σ′)

(Ω,Ω′), ~k
=

∫ +∞

−∞

dk1
4π

[( 1

ωk,1
+

1

ωk,2

)(ωk,1 + k1
ωk,1 − k1

)iσΩ/2(ωk,2 + k1
ωk,2 − k1

)−iσ′Ω′/2

ei(ωk,1−ωk,2)x
0

]
, (87)

B(σ,σ′)

(Ω,Ω′), ~k
=

∫ +∞

−∞

dk1
4π

[( 1

ωk,2
− 1

ωk,1

)(ωk,1 + k1
ωk,1 − k1

)iσΩ/2(ωk,2 + k1
ωk,2 − k1

)−iσ′Ω′/2

ei(ωk,1+ωk,2)x
0

]
. (88)

The operators d
(σ)

(Ω,~k),A
, d̄

(σ)

(Ω,~k),A
, d

(σ)

(Ω,~k),B
and d̄

(σ)

(Ω,~k),B
also (independently) satisfy the canonical

commutation relations at equal times.
Now we analyze the mixing effect as seen by a Rindler observer. For this purpose, we expand

the mixed fields φA and φB in terms of the Rindler modes (40), obtaining

φA(x) =

∫ +∞

0
dΩ

∫
d2~k

∑

σ

(
b
(σ)

(Ω,~k),A
u
(σ)

(Ω,~k),1
(x) + b̄

(σ)†

(Ω,~k),A
u
(σ)∗

(Ω,~k),1
(x)
)
, (89)

φB(x) =

∫ +∞

0
dΩ

∫
d2~k

∑

σ

(
b
(σ)

(Ω,~k),B
u
(σ)

(Ω,~k),2
(x) + b̄

(σ)†

(Ω,~k),B
u
(σ)∗

(Ω,~k),2
(x)
)
. (90)

Since we are interested in the connection between the b
(σ)

(Ω,~k),A
and d

(σ)

(Ω,~k),A
operators, we equate

expansions (82) and (89). Forming the inner product of both sides with u
(σ)

(Ω,~k),1
and using the

orthonormality of the Rindler modes, it follows that

b
(σ)

(Ω,~k),A
=

∫ +∞

0
dΩ′

∫
d2~k′

∑

σ′

(
d
(σ′)

(Ω′,~k′),A
α̃
(σ,σ′)
kk′ + d̄

(−σ′)†

(Ω′,−~k′),A
β̃
(σ,σ′)

kk̄

)
, (91)

with

α̃
(σ,σ′)
kk′ =

(
Ũ

(σ′)

(Ω′,~k′),1
, u

(σ)

(Ω,~k),1

)
, (92)

β̃
(σ,σ′)

kk̄
=

(
Ũ

(−σ′)∗

(Ω′,−~k′),1
, u

(σ)

(Ω,~k),1

)
, (93)

where the first subscript k of α̃
(σ,σ′)
kk′ and β̃

(σ,σ′)

kk̄
stands for (Ω, ~k) while the second subscript k̃′

for (Ω′,−~k′). A similar calculation can be performed for b̄
(σ)

(Ω,~k),A
.

By noting that the coefficients α̃
(σ,σ′)
kk′ and β̃

(σ,σ′)

kk̄
do not depend on θ and that the equation (91),

for θ = 0, must reduce to the transformation (59) (since b
(σ)

(Ω,~k),A
|
θ=0

= b
(σ)

(Ω,~k),1
, d

(σ)

(Ω,~k),A
|
θ=0

=

d
(σ)

(Ω,~k),1
and d

(−σ)

(Ω,−~k),A
|
θ=0

= d
(−σ)

(Ω,−~k),1
), one could demonstrate that (up to an irrelevant phase

factor)

b
(σ)

(Ω,~k),A
=
√
1 +N(Ω) d

(σ)

(Ω,~k),A
+
√
N(Ω) d̄

(−σ)†

(Ω,−~k),A
. (94)

The corresponding relation between the b
(σ)

(Ω,~k),B
and d

(σ)

(Ω,~k),B
operators can be derived by equating

expansions (83) and (90) and performing the same calculation as above.

Finally, let us calculate the expectation value of the number operator b
(σ)†

(Ω,~k),A
b
(σ)

(Ω,~k),A

with respect to the Minkowski vacuum (71) (a similar calculation can be performed for

b
(σ)†

(Ω,~k),B
b
(σ)

(Ω,~k),B
). To do this, we need the explicit expressions for d

(σ)

(Ω,~k),A
(Eq.84) and d̄

(σ)

(Ω,~k),A
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(Eq.(85)). Observe that the resolution of integrals (87) and (88) is not trivial. It seems
reasonable to suppose that

A(σ,σ′)

(Ω,Ω′), ~k
= ρ̃

(σ) ∗

(Ω,~k)
δσσ′ δ(Ω − Ω′), (95)

B(σ,σ′)

(Ω,Ω′), ~k
= λ̃

(σ)

(Ω,~k)
δσσ′ δ(Ω − Ω′). (96)

The coefficients ρ̃
(σ) ∗

(Ω,~k)
and λ̃

(σ)

(Ω,~k)
have still to be determined. They should depend on ~k through

the sum and the difference of µk,1 and µk,2, respectively, with µk,i defined in Eq.(27). For

m1 → m2, we must have ρ̃
(σ) ∗

(Ω,~k)
→ 1 and λ̃

(σ)

(Ω,~k)
→ 0 (see Eq.(86)). This also happens in the

ultrarelativistic limit, when |~k| =
√
k22 + k23 ≫ mi implying µk,1 ≈ µk,2.

With the ansatz (95) and (96), it is possible to rewrite Eq.(94) as

b
(σ)

(Ω,~k),A
=

√
1 +N(Ω)

[
cos θ d

(σ)

(Ω,~k),1
+ sin θ ρ̃

(σ) ∗

(Ω,~k)
d
(σ)

(Ω,~k),2
+ sin θ λ̃

(σ)

(Ω,~k)
d̄
(σ)†

(Ω,−~k),2

]

+
√
N(Ω)

[
cos θ d̄

(−σ)†

(Ω,−~k),1
+ sin θ ρ̃

(−σ)

(Ω,~k)
d̄
(−σ)†

(Ω,−~k),2
+ sin θ λ̃

(−σ) ∗

(Ω,~k)
d
(−σ)

(Ω,~k),2

]
,

where we have used Eqs.(84) and (85).
Therefore, the expected number spectrum of the “mixed” Rindler-Fulling particles in the

vacuum (71) takes the form

N (σ)

(Ω,~k),A
≡ 〈0M | b(σ)†

(Ω,~k),A
b
(σ)

(Ω′,~k′),A
|0M 〉 (97)

=

[
(1 +N(Ω)) sin2 θ

∣∣∣∣λ̃
(σ)

(Ω,~k)

∣∣∣∣
2

+N(Ω)

(
cos2 θ + sin2 θ

∣∣∣∣ρ̃
(−σ)

(Ω,~k)

∣∣∣∣
2
)]

δ(Ω − Ω′)δ2(~k − ~k′).

Note that, for θ → 0, Eq.(97) correctly reduces to Eq.(65), as one would expect in absence of
mixing. Analogous considerations hold in the limit m1 → m2 and in the ultrarelativistic limit,

since we have ρ̃
(σ) ∗

(Ω,~k)
→ 1 and λ̃

(σ)

(Ω,~k)
→ 0.

6. Conclusions

We have considered the problem of quantization of two mixed charged boson fields with different
masses for a uniformly accelerated observer (Rindler observer). We found that the Bogoliubov
tranformations related to the field mixing on one side and to the Rindler spacetime structure on
the other side, combine in a non-trivial way, affecting observable quantities such as the Unruh
radiation.

Some results presented in this paper are preliminary: due to technical difficulties, it was not
possible to obtain quantitative estimation of the obtained results. More study is necessary and
work is in progress along this line [18].

The analysis carried out in this paper, once properly extended to the fermionic case, may serve
as basis for studying neutrino oscillations in curved spacetime: this is a problem of interest since,
although the gravitational interaction is relatively weak compared to electromagnetic and weak
interactions, there could exist cosmological and astrophysical scenarios where gravitational fields
are rather strong, affecting non trivially the propagation of particles. Previous studies on the
influence of the gravitational field on neutrino mixing and oscillations can be found in Refs.[19].
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Appendix: Explicit calculation of wave function Ũ

We calculate the integral for the wave function Ũ
(σ)

Ω,~k
(x) defined in Eq.(24)

Ũ
(σ)

Ω,~k
(x) =

∫ +∞

−∞
dk1 p

(σ)∗
Ω (k1)Uk(x). (98)

Substituting Eqs.(4) and (16) into Eq.(98) and using the hyperbolic coordinates (25), we obtain

Ũ
(σ)

Ω,~k
(x) =

∫ +∞

−∞
dk1

1√
(2πωk)

(
ωk + k1
ωk − k1

)−iσΩ/2 ei(k1x
1+~k·~x−ωkx

0)
√
2ωk(2π)

3

=
1

(2π)2
√
2

∫ +∞

−∞

dk1
ωk

(
ωk + k1
ωk − k1

)−iσΩ/2

ei ξ(k1 cosh η−ωk sinh η)ei
~k·~x. (99)

The last integral can be solved by performing the following change of variables

k1 = µk sinh t =⇒ dk1 = µk cosh t dt. (100)

By virtue of this transformation, we have

ωk = µk cosh t, (101)

so the Eq.(99) becomes

Ũ
(σ)

Ω,~k
(x) =

1

(2π)2
√
2

∫ +∞

−∞
dt

(
cosh t+ sinh t

cosh t− sinh t

)−iσΩ/2

eiµkξ(sinh t cosh η−cosh t sinh η)ei
~k·~x

=
1

(2π)2
√
2

∫ +∞

−∞
dt e−iσΩt eiµkξ sinh(t−η)ei

~k·~x. (102)

With the further substitution
η − t = t′, (103)

it follows that

Ũ
(σ)

Ω,~k
(x) =

1

(2π)2
√
2

∫ +∞

−∞
dt′ eiσΩt′e−iµkξ sinh t′ei(

~k·~x−σΩη). (104)

By using the following integral representation of the modified Bessel function of the second kind

Kα(x) =
1

2
e−iαπ/2

∫ +∞

−∞
dt e−ix sinh t−αt, (105)

we finally obtain

Ũ
(σ)

Ω,~k
(x) =

eσπΩ/2

2
√
2π2

KiσΩ(µkξ) e
i(~k·~x−σΩη), (106)

where we used the property Kα(x) = K−α(x).
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