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Abstract. Isospin, density and electromagnetic waves in asymmetric nuclear matter with the
addition of electrons (ANM) are studied. The use of a semi classical relativistic approach
based on the Wigner function and its Vlasov like equation to study ANM allowed to obtain
the dispersion relations for small amplitude oscillations. The small longitudinal wave case
results were equivalent with a previous work that used a somewhat di�erent formalism called
generating function. The small transverse wave results, that cannot be obtained directly using
the generating function formalism, were also obtained.

1. Introduction

Relativistic phenomenological models, such as the quantum hadrodynamical model (QHD) [1],
are important tools to investigate and describe nuclei and nuclear matter. With the adequate
parameters, these models are e�ective to study systems that vary from simple nuclei, both stable
and unstable [2, 3], to astrophysical objects, e.g. neutron stars and supernovae [4, 5]. Due to this
success, it is evident that a full investigation of the models properties is necessary. In particular,
the quantum relativistic kinetic theory, and its quantum relativistic transport equations, play an
important role to obtain the non-equilibrium behavior of these models.

In order to achieve a complete quantum relativistic kinetic theory, it is necessary to use a
quantum relativistic distribution function, also known as the covariant Wigner function [6]. This
approach allows us to develop a more robust theory, capable of investigating phenomena in non-
equilibrium systems. Besides, its deduction is very similar to the classical one, allowing a deeper
understanding of the quantum e�ects on the theory.

There are previous works already done on instabilities, phase transitions and collective modes
in asymmetric nuclear matter (ANM) where the results were obtained using various methods.
For example in Ref. [7] the author used a non relativistic Landau-Fermi liquid theory. In Refs.
[8, 9], the Wigner function was used in a semi classical approach for the symmetric nuclear
matter and the Vlasov equation (transport equation) was obtained, but the way to manipulate
the Vlasov equation was through the generating function method. The same formalism was used
in Refs. [10, 11] for ANM.

The present work aims to develop a di�erent, more straightforward, formalism. Instead of
using the generating functions to solve the Vlasov equation, we use the Vlasov equation and
the system's equations of state. In this way we are able to reobtain the results from Ref.
[11] for longitudinal small amplitude oscillations around a equilibrium state in nuclear matter.
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Furthermore, we were able to obtain results for transverse oscillations, which to our knowledge
was never made before.

2. Theory Overview

We consider a system of baryons of mass M interacting with and through a isoscalar-scalar
�eld φ with mass ms, a isoscalar-vector �eld Vµ with mass mv and an isovector-vector �eld ~bµ

with mass mρ. Furthermore we include electrons with mass me. The electrons and the protons
interact through the electromagnetic �eld Aµ. The Lagrangian density reads:

L =
∑
i=p,n

Li + Le + Lσ + Lω + Lρ + LA, (1)

where:

Li = ψ̄i [iγµD
µ −M∗]ψi;

Dµ = i∂µ − gvVµ −
gρ
2
~τ ·~bµ − e1 + τ3

2
Aµ;

M∗ = M − gsφ;

Le = ψ̄e [γµ(i∂µ + eAµ)−me]ψe;

Lσ =
1

2

(
∂µφ∂

µφ−m2
sφ

2 − 1

3
κφ3 − 1

4!
λφ4

)
;

Lω = −1

4
Ω∗µνΩ∗µν +

1

2
m2
vVµVµ;

Lρ = −1

4
~Bµν ~Bµν +

1

2
m2
ρ
~bµ~bµ;

LA = −1

4
FµνFµν;

Ω∗µν = ∂µVν − ∂νVµ;

~Bµν = ∂µ~bν − ∂ν~bµ − gρ(~bµ ×~bν);

Fµν = ∂µAν − ∂νAµ;

We also need the Wigner function de�nition:

F (x, p)βα =
1

(2π)4

∫
d4R e−ip·R

〈
ψ̄β(x+R/2)ψα(x−R/2)

〉
, (2)

where the so called Wigner function actually is a 4× 4 matrix.
Using the �eld equations together with the de�nition of the Wigner function, and assuming

the ansatz f(x,Π) = 2Θ(Π0)δ(Π2 − M∗2)f̃(x, ~Π) for the scalar Wigner function component,
which is in complete agreement with the stationary case, it is possible to obtain the Vlasov
equation (transport equation) for the system, in O(~):[

Πµ∂µ −ΠµΩµk∂
k
Π +M∗(∂kM∗)∂Π

k

]
f̃(x, ~Π) = 0, (3)

where Ωµν = ∂µV ν − ∂νV µ;, V µ = gvVµ +
gρ
2 ~τ · ~bµ + e1+τ3

2 Aµ, Πµ is the kinetic four-momentum,
the greek indices represents four-vectors and the latin indices spatial three-vectors.

The process to obtain this equation is straightforward, and details con be found in Ref [12].
We can rewrite this equation as:

d

dt
f(x, ~Π) =

∂f

∂t
+ {f,H} = 0, (4)

where H is the system's Hamiltonian. This is the conservation of the absolute particle number
(particles-antiparticles). Thus, the Vlasov equation represents one of the most basic conservation
law in physics.
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3. Small Oscillations

Solving the Vlasov equation for the most general case is impossible, but as we are interested
in studying the collective modes, we should approach the equilibrium state through small
oscillations. These small deviations can be described by:

fi = fi(0) + δfi, φ = φ0 + δφ, V µ
i = V µ

i(0) + δV µ,

where fi(0), φ0 and V µ
i(0) are the equilibrium quantities.

When we apply these near equilibrium conditions in the Vlasov equation and in the �eld
equations, assuming again O(~) and considering the Fourier transform of all the quantities
considered, we obtain the following set of equations:

δf =

δ~V −
(
δV 0− ~Π

E
(0)
Π

·δ~V+M(0)∗gs
E

(0)
Π

δφ

)
ω− ~Π·~q

E
(0)
Π

~q

 · ∇~Πf(~Π),

δjµi (x) =


2

(2π)3

∫
d3~Π δfi, µ = 0

2
(2π)3

∫
d3~Π Πk

E
(0)
Π

δfi, µ = k
,

δρis(x) = 2
(2π)3

∫
d3~Π

[
M(0)∗

E
(0)
Π

δfi − gsdρ(0)i
s δφ

]
,[

−ω2 + ~q2 + m̃2
s

]
δφ(~q, ω) = gs

∑
i=p,n

2
(2π)3

∫
d3~ΠM(0)∗

E
(0)
Π

δfi(~q, ω, ~Π),

δV µ
i (ω, ~q) =

∑
j=p,n

[
g2
ω

−ω2+ ~q2+m2
ω

+
(gρ/2)2τiτj

−ω2+ ~q2+m2
ρ

]
δjµj (ω, ~q),

(5)

where M∗(0) = M − gsφ(0), E
(0)
π =

√
~Π2 + (M∗(0)2, dρ

(0)i
s = ∂

∂M∗(0) ρ
(0)i
s , m̃2

s = m2
s + kφ(0) +

λ
2φ

(0)2 + 2
(2π)3 g

2
s

∑
i=p,n

∫
d3~Π ∂

∂M(0)∗ρ
(0)i
s and i = p, n. Again, obtaining these equations is

straightforward and a more detailed derivation can be found in Ref [13].
Strictly speaking the problem is solved. This set is compatible and determined. But, as we

can see, for the most general case the solution is too complex. For this reason we will work with
two cases in which the system can be analytically solved up to a certain point. The electron
equations can be obtained from (5) by putting gs = gω = gρ = 0, since the electronic Lagrangian
does not have such terms.

3.1. Longitudinal Waves

Let us �rst consider the longitudinal waves for two main reasons: it is the simplest problem and
it was already solved in Ref. [11], so we are able to compare results. In our case, a longitudinal
wave is described by the following set:

δ~Vi = δVi3ê3, ~q = qê3, ωδV 0
i = qδV 3

i ,

where the last equation comes from the potential conservation law and i = p, n. Inputting
this new information on the set obtained previously and after long algebraic manipulations, we
obtain the following equation:1 + F ppLp F pnLp Cpee Lp

FnpLn 1 + FnnLn 0
Cepe Le 0 1− Ceee Le

AωpAωn
Aωe

 = 0 (6)

where the F 's, C's are functions depending on the equilibrium densities and �elds and the A's
are the variables. This is the called dispersion equation for the system. This matrix is equivalent
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to the matrix obtained in Ref [11]. Thus the method used is equivalent to the generating function
method used in that reference.

If we want non-trivial solutions for this equation, we should make the determinant of the
�rst matrix zero. With this condition we are able to get F 's, C's values and using these we
get information about the system properties, such as the collective modes amplitude for both
protons, neutrons and electrons. This was already investigated in [11].

3.2. Transverse Waves

We are now heading into new territory. These calculations are harder to be done due to the fact
that the generating function formalism is not well adapted to work in this condition. But as we
will show the formalism used in the present work proved to be e�ective in this case. Let us begin
with the transverse wave condition:

δ~Vi = δVi⊥ê⊥, ~q = qê3, ~q · δ ~Vi = 0

Again, using these equations in the set obtained previously and after long algebraic
manipulations, we obtain:1 + F pp F pn Cpp∗e

Fnp 1 + Fnn Cnp∗e

Cep∗e 0 1− Cee∗e

BωpBωn
Bωe

 = 0 (7)

where the F 's, C's are functions depending on the equilibrium densities and �elds and the B's
are the variables.

Again if we want non-trivial solutions for this equation, we should make the determinant of
the �rst matrix zero. Of course the problem is solved and the next step are numerical simulations.
We are implementing the algorithms and we expect to have results soon.

4. Conclusions

In order to validate our formalism to solve the Vlasov Equation we were able to rederive results
obtained in [11] for longitudinal waves. This shows that the formalism used in this work is
equivalent to the generating functions method.

Furthermore the formalism developed here was able to solve the transverse wave collective
mode, which was not treated before as seen in Ref. [11]. This couldn't be done using the
generating function formalism, at least not in a direct way. Using this result we could investigate
how an electromagnetic wave propagates through the nuclear matter described by the ANM
Lagrangian.

Also we see that the Wigner function is well suited to work in near equilibriumO(~) conditions.
There are various works in the literature studying near equilibrium systems using a multitude
of methods and approximations, but using the covariant Wigner function we are able to get
more detailed and reliable results. Besides, the formalism used in this work gives results for
the mesonic collective modes that are ignored in other methods, e.g. the Landau-Fermi Liquid
Theory.

The next step in this research is the numerical solution of the transverse wave modes. After we
have the numerical solution, we will be able to draw conclusions from the theory and investigate
if there is any regions of instability in the npe matter. We expect to solve the same problem,
but including a strong background magnetic �eld that are speculated to exist in the core of some
neutron stars, named magnetars.

Acknowledgments

We would like to thank CNPq-Conselho Nacional de Desenvolvimento Cientí�co e Tecnológico
for the �nnancial support given to the authors.

XXXVII Brazilian Meeting on Nuclear Physics IOP Publishing
Journal of Physics: Conference Series 630 (2015) 012030 doi:10.1088/1742-6596/630/1/012030

4



References
[1] Serot B D and Walecka J D 1986 Advances in Nuclear Physics 16

[2] Reinhard P G, Rufa M, Maruhn J, Greiner W and Friedrich J 1986 Z. Phys. A 13 323
[3] Sugahara Y and Toki H 1994 Nucl. Phys. A 579 557
[4] Shen H, Toki H, Oyamatsu K and Sumiyoshi K 1998 Nucl. Phys. A 637 435

Sumiyoshi K and Toki H 1994 Astrophys. J. 422 700
Menezes D P and Providencia C 2003 Phys. Rev. C 68 035804
Panda P K, Menezes D P and Providencia C 2004 Phys. Rev. C 60 025207

[5] Horowitz C J and Piekarewicz 2001 Phys. Rev. Lett. 86 5647
[6] Hakim R 1978 La Rivista Del Nuovo Cimento 1 1

Hakim R and Heivaerts J 1978 Phys. Rev. A 18 1250
Hakim R 2011 Introduction to Relativistic Statistical Mechanics: Classical and Quantum (Singapore, World
Scienti�c)

[7] Haensel P 1978 Nucl. Phys. A 301 53
[8] Nielsen M, Providencia C and Providencia J 1991 Phys. Rev. C 44 209

Nielsen M, Providencia C , Providencia J and Wang-Ru L 1994 Mod. Phys. Lett. A 10 919
[9] Nielsen M, Providencia C and Providencia J 1993 Phys. Rev. C 47 200
[10] Avancini S S, Brito L, Menezes D P and Providencia C 2005 Phys. Rev. C 71 044323
[11] Brito L et al 2006 Phys. Rev. C 74 045801
[12] Blattel B, Koch V and Mosel U 1993 Rep. Prog. Phys. 56 1
[13] Passos F, 2014 Formalismo de Vlasov covariante aplicado a modelos efetivos (Florianópolis, Brasil:

http://tede.ufsc.br/teses/PFSC0253-D.pdf)

XXXVII Brazilian Meeting on Nuclear Physics IOP Publishing
Journal of Physics: Conference Series 630 (2015) 012030 doi:10.1088/1742-6596/630/1/012030

5


