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Abstract. Novelty detection is a widely used algorithm in different fields of study due to its 

capabilities to recognize any kind of abnormalities in a specific process in order to ensure 

better working in normal conditions. In the context of Structural Health Monitoring (SHM), 

this method is utilized as damage detection technique because the presence of defects can be 

considered as abnormal to the structure. Nevertheless, the performance of such a method could 

be jeopardized if the structure is operating in harsh environmental and operational conditions 

(EOCs). In this paper, novelty detection statistical technique is used to investigate the detection 

of damages under various EOCs. Experiments were conducted with different scenarios: 

damage sizes and shapes. EOCs effects were simulated by adding stochastic noise to the 

collected experimental data. Different levels of noise were studied to determine the accuracy 

and the performance of the proposed method.  

1. Introduction 

 

SHM of structures using mainly ultrasonic piezoelectric sensors is a promising technique that has been 

developed in the recent years. The main advantage of this technique over conventional non-destructive 

evaluation is that the sensors are permanently mounted on the structure to be monitored [1]. Therefore, 

damage detection is an automatically process which does not need human intervention. It is based on 

several algorithms and signal processing methods that are capable of recognizing early stage structural 

damage. Nevertheless, sensors measurements, which should be basically sensitive to the presence of 

damage, are also sensitive to some environmental and operational conditions (EOCs) [2]. In other 

words, the effects of these EOCs could be the same as those produced by the damage. This would 

result in false warnings. Different methods of compensation were developed to overcome this 

problem, but they have been only designed to perform with an analytical damage detection method, 

namely subtraction method [3]. On the contrary, statistical methods are less sensitive to the EOCs and 

can be easily implemented to the monitoring system [4]. They fall into two categories: supervised and 

unsupervised. When it is a priori possible to retrieve data from damage state, damage identification is 

done by a supervised learning algorithm such as Artificial Neural Network (ANN) [4]. However, it is 

generally difficult to provide damaged data information; in this case the damage detection is achieved 

by an unsupervised learning algorithm based on novelty detection also known as outlier analysis.  

This paper is organised as follows. First, a theoritical background wich includes outlier analysis and 

the Discrete Wavelt Transform (DWT) will be presented. Afterward, the experimental setup that has 
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been used to simulate different damage scenarios, will be discussed in detail as well as the results. 

Finally, we conclude this paper and indicate the future work. 

2. Theoretical background 

2.1. Novelty detection 

The problem of novelty detection is to identify if the measured signal has deviated from the normal 

conditions while in-situ monitoring of engineering structures [5]. Obviously, two aspects can be 

derived from this problem, firstly how can we define the normal conditions and what is the efficient 

mean of calculating the deviance from these normal conditions. Since, the structure is exposed to 

different EOCs; the normal conditions should include all factors that can affect somehow the guided 

wave propagation (e.g. temperature, humidity, load vibration, etc.). In this study, to account for some 

variation in these EOCs, a digital stochastic noise was added to ultrasonic measured signals in form of 

signal-to-noise ratio. The second aspect has been inspired from statistics where the novelty detection is 

generally based on outlier analysis which is a well-studied field that has been recently utilized for 

damage detection purposes. In the data mining and statistic literature, outliers are also referred to as 

anomalies, abnormalities, deviants. It follows that an outlier is defined as a data which is significantly 

different form a baseline dataset [6]. Depending on this baseline data form, the outlier analysis can be 

calculated through two methods: univariate or multivariate. 

2.1.1. Univariate analysis 

Given a set of variables representing data which can be considered as an outlier candidate, the 

univariate analysis explores each variable separately. The discordancy of this outlier can be measured 

with different tests. The most common test is the deviation statistics, which can be defined as: 

                                                      𝐳 =
|𝐱−𝐱̅|

𝛔
                                                                                         (1) 

where x is the potential outlier candidate, x̅ and σ, the main and the standard deviation of the baseline 

data respectively. This discordancy value is then compared to a threshold which will be discussed in 

detail later to determine whether the data is an outlier or not. 

2.1.2. Multivariate analysis 

In the multivariate analysis, all variables must be combined in a multi-dimensional vector. In this case, 

the deviation statistics used in the univariate analysis for discordancy test is replaced by the 

Mahalanobis Square Distance (MSD) given by [7]: 

                                                            𝐃 = (𝐱 − 𝐱̅)𝐭. 𝐊−𝟏. (𝐱 − 𝐱̅)                                                                            (2) 

where x is the potentiel outlier damage index vector, x̅, the mean vector of the baseline, K, the 

covariance matrix of the baseline and t, matrix transpose index. As in the univariate analysis, the MSD 

value must be compared to a threshold. 

2.1.3. Threshold computation 

The threshold value is necessary to determine whether a candidate is an outlier or inlier. Its 

computation depends on the baseline data distribution. When the data are supposed to be non-

parametric, the threshold is calculated using the extreme value theorem (based on Monte Carlo 

simulation) [8]. Otherwise, following a parametric approach, more particularly, if the data is assumed 

to represent a Gaussian distribution, the threshold value is taken as 99.73% of the Gaussian limit 

confidence. Therefore, if a candidate is classified as an outlier, there is only 0.27% chance of false 

classification. Notice that this threshold is a choice, and hence the lower the threshold, the higher the 

false calls probability.   
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2.2. Discrete Wavelet transform (DWT) 

The DWT is a discrete implementation of the wavelet transform which is a time frequency 

representation, well designed for the analysis of non-stationary signals (e.g. ultrasonic guided waves) 

[9]. The DWT decomposes the original signal by computing its correlation with a short-duration wave 

called the mother wavelet into approximation and detail coefficients as it is shown in Figure 1. Two 

major applications of this signal processing method can be exploited in this study: denoising and 

compression [10]. This can be achieved if only a few wavelet coefficients containing the essential 

information of interest are retained and the remaining coefficients, related to unnecessary information 

such as noise, are eliminated. 

 
Figure 1. Discrete wavelet transform of an experimental ultrasonic signal (top) showing the detail (medium) and 

the approximation coefficients (down) 

3. Case of study 

This section aims to apply the theory of novelty detection to detect and characterise damages severity 

(if possible) in pipeline structure during in-situ monitoring via ultrasonic guided waves (UGW). Both 

the univariate and the multivariate techniques will be investigated to determine which one is the most 

efficient for damage detection. 

3.1. Experimental setup 

Data acquisition (emission and reception of UGW) was performed using MsS System, designed for 

pipeline non-destructive testing via ultrasonic guided waves. In order to test the performance of defect 

detection method, damages were created artificially by adding a magnets cluster on the surface of the 

structure as it is illustrated in Figure 2.  

 
Figure 2. Artificially simulated damages in a pipeline structure 

Defect 

Emitter / 

receiver 
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A single measurement of each damage system states (baseline, 1 defect, 2 defects, 3 defects, 4 defects) 

was taken. Afterward, a digital random noise was added in order to create the statistical population 

(database) and to simulate some variation of the signal-to-noise ratio which can be induced by several 

factors namely, EOCs effect, sensors ageing etc. The noise was created using randn function 

predefined in MATLAB. This function generates an arrays of random numbers normally distributed 

with zero mean and a standard deviation equal to 1. It was multiplied by a factor determining the noise 

level (0.01 low level noise and 0.05 for a high level noise). For each level noise, a total of 200 samples 

were created for all damages states. Once the database is created (Figure 3), UGW signals must first 

be gated to remove all redundant information as well as significantly reduce the data size. The critical 

information of the pipe’s condition was stored in the time frame between the excitation of the tone 

burst pulse and the arrival of the end of the pipe (EOP). The gating technique first detects the 

excitation pulse and the arrival time of the EOP, which can be easily determined by knowing the 

signal velocity and the length of the pipe. After gating, the DWT was applied to compress and to 

denoise the data. The wavelets coefficients were used to calculate the damage-sensitive features. RMS, 

variance, peak to peak and maximum amplitude were chosen as damage index (DI). 

 
Figure 3. Building the database for the baseline population 

3.2. Results and discussion 

3.2.1. Univariate analysis (low noise level) 

As it was described in section 2.1, in the univariate analysis all damage sensitives features (RMS, 

Variance, Peak to peak amplitude, maximum amplitude) were considered separately. Figure 4 

illustrates the results of discordancy test for all damages types including the baseline and for all 

damage-sensitives features in the case of a low level of noise. Each value was obtained using equation 

1 where the mean and the standard deviation were calculated from the baseline data. Since the baseline 

data are normally distributed, the threshold was representing 99.73% Gaussian confidence limit. Each 

damage type has been properly detected even in the case of one defect. Besides, the differentiation 

between all damage types has been clearly noticed by the increasing steps at 201, 401, 601 and 801. 

Interestingly, for all damage-sensitives features, there is no indication of false alarm, because all 

samples have been correctly classified. Despite these satisfactory results, the use of univariate analysis 

doesn’t guarantee that all the damages-sensitive features will behave in same manner. In other words, 

some features could for example indicate the presence of a defect and others not. This fact reduces the 

applicability of such a method. 
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3.2.2. Univariate analysis (high noise level) 

When using a high level of noise, results shown in Figure 5 and Figure 6 demonstrate that the 

threshold increases greatly, therefore, the sensitivity of detection decreases. In this case, all damages 

type’s samples are correctly classified except for the type of one defect where almost all samples are 

below the threshold which indicates negative false alarms. 

 

 

 
 

Figure 4. Univariate analysis for a low noise level and for four damage sensitive features (RMS, Variance, Peak 

to peak amplitude and Maximum amplitude). The red line corresponds to the threshold 

 
 

Figure 5.  Univariate analysis for high level noise (left: RMS, right: Variance). The red line corresponds to the 

threshold  
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Figure 6. Univariate analysis for high level noise (left: Peak to peak amplitude, right: maximum amplitude). The 

red line corresponds to the threshold    

3.2.3. Multivariate analysis 

As it was described in section 2.1.2, in the multivariate analysis the four damages sensitive features 

are used simultaneously to construct a four dimensional vector. The MSD calculated from the baseline 

all damages conditions for data corrupted by a low noise level is illustrated in Figure 7 (left). It can be 

clearly noticed that the multivariate performs well than the univariate analysis. Firstly, the values of 

the MSDs are much greater the corresponding values of the univariate analysis. As a consequence, the 

sensitivity to damage is enormously improved. Secondly, there is a good discrimination between all 

damage types. For high noise level, results shown in Figure 7 (right), are excepted because the 

sensitivity to damage was decreased and hence one type defect has not been identified. 

 

 
Figure 7. Multivariate analysis for low noise level (left) and for high noise level (right) 

4. Conclusion 

In this paper, the application of novelty detection as damage identification technique was investigated 

under varying EOCs. Features extraction were performed using the coefficients of DWT. The use of 

DWT is essential for noise suppression, and signal compression if there is need. Results have shown 

that the multivariate analysis is much better than the univariate analysis in terms of sensitivity to 

damage and discrimination between all damages types. It has been also shown that the level of noise 

compromises greatly the sensitivity of detection either in univariate or multivariate analysis. In the 

present work, RMS, Variance, Peak to peak amplitude and Maximum amplitude are chosen to be 
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investigated. Some other features could be used and might be more sensitive that the current tried 

ones. Further studies concerning this item are to be performed in the near future.     

 

5. References 

[1] Farrar CR, Worden K. An introduction to structural health monitoring. Philos Trans A Math 

Phys Eng Sci 2007;365:303–15. doi:10.1098/rsta.2006.1928. 

[2] Sohn H. Effects of environmental and operational variability on structural health monitoring. 

Philos Trans A Math Phys Eng Sci 2007;365:539–60. doi:10.1098/rsta.2006.1935. 

[3] Croxford AJ, Moll J, Wilcox PD, Michaels JE. Efficient temperature compensation strategies 

for guided wave structural health monitoring. Ultrasonics 2010;50:517–28. 

doi:10.1016/j.ultras.2009.11.002. 

[4] Sohn H, Farrar CR, Hunter NF, Worden K. Structural Health Monitoring Using Statistical 

Pattern Recognition Techniques. J Dyn Syst Meas Control 2001;123:706. 

doi:10.1115/1.1410933. 

[5] Worden K, Manson G, Fieller NRJ. Damage Detection Using Outlier Analysis. J Sound Vib 

2000;229:647–67. doi:10.1006/jsvi.1999.2514. 

[6] Pimentel M a. F, Clifton D a., Clifton L, Tarassenko L. A review of novelty detection. Signal 

Processing 2014;99:215–49. doi:10.1016/j.sigpro.2013.12.026. 

[7] Rizzo P, Sorrivi E, Lanza di Scalea F, Viola E. Wavelet-based outlier analysis for guided wave 

structural monitoring: Application to multi-wire strands. J Sound Vib 2007;307:52–68. 

doi:10.1016/j.jsv.2007.06.058. 

[8] Odening M, Hinrichs J. Using Extreme Value Theory to Estimate Value-at-Risk. Agricultural 

Finance Review, 2003‏. 

[9] Adeli H, Zhou Z, Dadmehr N. Analysis of EEG records in an epileptic patient using wavelet 

transform. Journal of Neuroscience Methods Volume 123, Issue 1, 15 February 2003, Pages 69–

87 

 [10] Brussel VU. Noise suppression and signal compression using the wavelet packet transform. 

Chemometrics and Intelligent Laboratory Systems. Volume 36, Issue 2, April 1997, Pages 81–

94 

 

 

 

 

11th International Conference on Damage Assessment of Structures (DAMAS 2015) IOP Publishing
Journal of Physics: Conference Series 628 (2015) 012126 doi:10.1088/1742-6596/628/1/012126

7


