
Damage localization by statistical evaluation of

signal-processed mode shapes

M.D. Ulriksen and L. Damkilde

Dept. of Civil Engineering, Aalborg University, Niels Bohrs Vej 8, Esbjerg, Denmark

E-mail: mdu@civil.aau.dk, lda@civil.aau.dk

Abstract. Due to their inherent ability to provide structural information on a local level,
mode shapes and their derivatives are utilized extensively for structural damage identi�cation.
Typically, more or less advanced mathematical methods are implemented to identify damage-induced
discontinuities in the spatial mode shape signals, hereby potentially facilitating damage detection
and/or localization. However, by being based on distinguishing damage-induced discontinuities from
other signal irregularities, an intrinsic de�ciency in these methods is the high sensitivity towards
measurement noise. The present article introduces a damage localization method which, compared to
the conventional mode shape-based methods, has greatly enhanced robustness towards measurement
noise. The method is based on signal processing of spatial mode shapes by means of continuous
wavelet transformation (CWT) and subsequent application of a generalized discrete Teager-Kaiser
energy operator (GDTKEO) to identify damage-induced mode shape discontinuities. In order to
evaluate whether the identi�ed discontinuities are in fact damage-induced, outlier analysis of principal
components of the signal-processed mode shapes is conducted on the basis of T 2-statistics. The
proposed method is demonstrated in the context of analytical work with a free-vibrating Euler-Bernoulli
beam under noisy conditions.

1. Introduction

Numerous vibration-based structural health monitoring (SHM) methods have been proposed for
damage detection and/or localization of structural damages in aerospace, civil, and mechanical systems,
see, e.g., [1, 2, 3, 4]. The applicability of the proposed methods has primarily been tested on the basis
of analytical models, �nite element (FE) simulations, and controlled laboratory tests; all in which
signi�cant simpli�cations and idealizations are made with regard to, among other things, environmental
e�ects. In this context, it is has been found that the simple methods directly comparing pre- and post-
damage vibration-based quantities, such as modal parameters, exhibit only limited potential for damage
detection and/or localization, see, e.g., [1, 5]. Under more realistic conditions, these methods turn out
to be entirely inapplicable because the direct changes of the aforementioned quantities typically will be
concealed by environmental e�ects and noise contamination. As an example, it is documented in [6, 7]
how environmental e�ects and general operational conditions can account for up to at least 5 % shifts
in eigenfrequencies, which, as documented in, e.g., [7, 8], hardly will be exceeded by damage-induced
eigenfrequency changes.

As a consequence of the general inadequacy of the simple methods, current research within the �eld
of vibration-based SHM is mainly leveled at developing more sophisticated and robust methods. Some
of these methods are based on signal processing of spatial mode shapes signals, which seems auspicious
as this modal parameter, contrary to global modal parameters such as eigenfrequencies, inherently
provides structural information on a local level. A common approach is to exploit that a damage will
introduce mode shape discontinuities, albeit not always directly visible ones, which can be captured
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by use of signal processing techniques, e.g. continuous wavelet transformation (CWT). Namely CWT
has been employed extensively for localizing structural damages in both simple beam- and plate-like
systems, see, e.g., [9, 10, 11], and more complex structures such as wind turbine blades [8, 12]. However,
by being based on distinguishing damage-induced discontinuities from other signal irregularities, an
intrinsic de�ciency of the aforementioned CWT-based methods is the rather low robustness towards
measurement noise. To treat this issue, a method in which wavelet-transformed mode shapes are
processed by use of the discrete Teager-Kaiser energy operator (DTKEO) is proposed in [13]. Here, it
is shown, on the basis of analytical and experimental work with di�erent beams, that addition of the
DTKEO signi�cantly reduces the sensitivity towards noise.

Compared to the method documented in [13], the method proposed in the present paper constitutes
a generalization of the applied signal processing plus an extension by means of outlier analysis to yield
the �nal discrimination between undamaged and damaged areas. As such, the proposed method
is composed of three steps; �rst, a �ltered mode shape derivative is obtained of a spatial mode
shape signal through CWT, and subsequently a generalized discrete Teager-Kaiser energy operator
(GDTKEO) is applied to this derivative to form an energy-processed signal in which the damage-
induced discontinuities are magni�ed. Finally, a statistical evaluation scheme based on T 2-statistics
is applied to principal components of these energy-processed, �ltered mode shape derivatives in order
to label the structures as healthy or damaged at each sensor location/measurement point. To test
the applicability of the method, and the potential degree of improvement compared to the method
proposed in [13], a free-vibrating, analytical Euler-Bernoulli beam under noisy conditions is analysed.

2. Damage localization method

2.1. CWT

The spatial mode shape signal, f(x) ∈ L2(R), is obtained as a signal-processed version of the original
mode shape, u. The signal processing consists of signal expansion in order to remove boundary
distortions (resulting in u → f). Typically, when dealing with a sparse number of measurement
points in, e.g., experiments, an interpolation scheme should also be applied to smooth the mode shape
signal and hereby remove arti�cial discontinuities. However, since analytically derived mode shapes
are utilized in this article, the smoothing scheme is omitted.

Based on the spatial mode shape signal, f(x) ∈ L2(R), and the wavelet function, γ(x) ∈ L2(R), the
CWT is de�ned as

Wf(a,b) = a−
1
2

∫
R
f(x)γ∗

(
a−1
(
x− b

))
dx, (1)

where a > 0 and b ∈ R are wavelet scales and positions, respectively. Evidently, the CWT is obtained
as the inner product of f(x) and the complex conjugated, indicated with the superscript ∗, of the
so-called wavelet family, which consists of functions constructed from dilations and translations of γ.

The e�ectiveness of the CWT as a signal discontinuity scanner highly depends on the employed
wavelet type; in particular, the amount of vanishing moments, m. Assume k ∈ N+, then

∀k < m :

∫
R
γ(x)xkdx = 0, (2)

which states that a wavelet with m vanishing moments is blind to polynomial trends up to degree
m − 1. Equivalently, when analyzing a spatial mode shape signal with a wavelet with m vanishing
moments, a �ltered m-derivative of the mode shape is obtained. This becomes evident by realizing
that the expression in equation (1) also can be seen as the convolution of f with a scaled, �ipped, and
conjugated wavelet, thus

∃θ(x) =

∫
R
γ(x)dmx 3Wf(a,b) =

∫
R
f(x)γ×a (b− x)dx =

(
f ∗ dm

dxm
θ×a

)(
b
)

=
( dm

dxm
f ∗ θ×a

)(
b
)
. (3)
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This emphasises the importance of choosing a wavelet with a certain minimum of vanishing moments
when searching for discontinuities in a signal. Correspondingly, there is also a certain maximum for
the proper amount of vanishing moments due to, i.a., magni�cation of signal noise and adverse border
distortions. Clearly, the optimal choice of wavelet strongly depends on signal characteristics such as
mode shape type and noise conditions and should therefore be drawn based on these. This is treated
further in subsection 3.2.

As stated in section 1, CWTs have previously exhibited damage localization potential. However,
as noise is added to the signal, this potential is signi�cantly reduced since the discrimination between
noise- and damage-induced CWT peaks becomes troublesome, especially at the lower wavelet scales.
For the higher scales, at which noise is better �ltered, the low spatial frequency reduces the potential for
capturing damage-induced signal discontinuities, thus emphasising the need for further enhancement
of these.

2.2. GDTKEO

Since the DTKEO was proposed, originally as a signal energy estimator [14], it has been utilized
extensively in speech processing [15], image processing [16], and pattern recognition [17]. Recently,
the DTKEO has been adopted to the �eld of damage identi�cation; as in [18], where it is included in
a general damage detection algorithm, and, as mentioned in section 1, in [13], where it is applied to
wavelet-transformed mode shapes for damage localization in beams, without any statistical procedure
for discriminating between undamaged and damaged areas.

With the notation utilized in the present paper, the DTKEO of a wavelet-transformed mode shape
signal at scale a and spatial location i can be found as

ψa,i = Wf2a,i −Wfa,i−1Wfa,i+1. (4)

In order to enhance the performance of the DTKEO as a signal discontinuity magni�er, it is expanded
intuitively by means of a lag parameter, κ, hence yielding the GDTKEO

Ψa,i = Wf2a,i −Wfa,i−κWfa,i+κ, (5)

i.e. Ψa = ψa if κ = 1. As can be realized from equation (5), the lag parameter serves directly to
alleviate the adverse noise e�ects, in analogy to the approach explored for deriving pseudo-modal
curvatures through Laplacian operators in [19]. Generally, κ should be chosen on the basis of signal
characteristics such as number of measurement points, i.e. signal length, and noise conditions. In
subsection 3.2, a simple, yet very e�ective, method for selecting κ is proposed.

2.3. Outlier analysis

In order to evaluate whether the localized mode shape discontinuities are in fact damage-induced,
outlier analysis is conducted by calculating the statistical distance, based on the T 2-statistic, between
the signal-processed mode shapes from the present state and similar ones from the healthy state.

Outlier analysis is conducted for each signal band located at a sensor/measurement point, j, such

T 2
j = |Ψj |TPjΣ−1j P Tj |Ψj | (6)

where Pj and Σj contain, respectively, the selected principal components (i.e., eigenvectors) and
eigenvalues of the covariance matrix of

Zj =

ΨT
j,train(1)
...

ΨT
j,train(S)

 . (7)
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Evidently, Zj is a training matrix based on S signal bands at sensor/measurement point j from the
baseline, i.e. healthy, state. A signal band at sensor/measurement point j for the current state is then
tested on the basis of the following hypothesis:

H0,j : T 2
j ≤ ϑj

H1,j : T 2
j > ϑj

}
(8)

in which the null hypothesis, H0,j , designates that no anomalies are present at the jth
sensor/measurement point, whereas the alternative hypothesis, H1,j , declares the structure damaged
at sensor/measurement point j. The threshold, ϑj , is found through the training data. Here, a T 2-
statistic between each row in Zj and the remaining S − 1 rows is calculated, and subsequently the S
T 2-statistics are sorted in an ascending order. Finally, ϑj is then chosen as the value exceeded by 1 %.

3. Application example: Analytical beam model

3.1. Cracked Euler-Bernoulli beam

The application example is based on the beam model depicted in �gure 1a, which is treated analytically.
The beam has a length of L, cross-sectional dimensions of v = d = 0.03L, and is assigned an isotropic
material model with a Young's modulus, E, corresponding to construction steel, i.e. E = 200 GPa. A
structural damage with height s = 0.15d is introduced as a crack at location x/L = 0.4.

The beam is treated analytically through Euler-Bernoulli beam theory, such transverse vibrations
are governed only by the bending deformations. Assuming that the e�ect of the crack is apparent only
in its area, the crack can be modelled as a linear rotational spring with sti�ness [20]

KR =
vEI

6πdF (ζ)
, (9)

where EI is the �exural sti�ness, while

F (ζ) = 1.86ζ2 − 3.95ζ3 + 16.37ζ4 + 37.22ζ5 + 76.81ζ6 + 126.9ζ7 + 172.5ζ8 − 144ζ9 + 66.6ζ10 (10)

is a dimensionless local compliance function, see e.g. [20], with the independent variable ζ = s/d.
As seen in �gure 1b, the spring divides the beam into two separate segments. The transverse motion

of each beam segment, wi(x), is described spatially by the dimensionless governing equation

w′′′′i (X)− λ4wi(X) = 0, i = 1,2, (11)

s

(a) (b)

Figure 1. Cracked cantilevered beam. (a) General beam model. (b) Equivalent beam-spring model.
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in which X = x/L, w′′′′i (X) = d4wi(X)/dX4, and λ4 = ω2AL4ρ/EI, with ω, A, I, and ρ being the
eigenfrequency, the cross-sectional area, the cross-sectional moment of inertia, and the mass density.

Solving equation (11) yields

wi(X) = c1,i cos(λX) + c2,i sin(λX) + c3,i cosh(λX) + c4,i sinh(λX), i = 1,2, (12)

where the constants of integration are found by applying the boundary conditions of the cantilevered
beam, i.e.

w1(0) = 0 ∧ w′1(0) = 0 ∧ w′′2(1) = 0 ∧ w′′′2 (1) = 0 = 0, (13)

plus the following compatibility conditions in the crack area (X = Xc):

w1(Xc) = w2(Xc) ∧ KR

(
w′1(Xc)−w′2(Xc)

)
= −EIw′′1(Xc) ∧ w′′1(Xc) = w′′2(Xc) ∧ w′′′1 (Xc) = w′′′2 (Xc).

(14)

When substituting equation (12) into equations (13) and (14), the characteristic equation is
obtained. From here, the eigenfrequencies and subsequently the constants of integration are derived
and substituted into equation (12) to yield the mode shapes.

3.2. Damage localization

To demonstrate the applicability and robustness of the proposed method, 300 noise-contaminated
(corresponding to a signal-to-noise ratio (SNR) of 65 dB) editions of both the �rst undamaged (i.e.,
Kr = ∞) bending mode shape and the �rst damaged bending mode shape are analyzed. 200 of the
signal-processed mode shapes from the undamaged state have been randomly chosen to constitute the
trained statistical baseline model against which the remaining 100 undamaged signal-processed mode
shapes and the 300 damaged signal-processed mode shapes are tested.

3.2.1. CWT settings. When referring to equation (1), it is evident that the CWT is an in�nite integral
transformation, thus boundary distortions will be introduced when analysing the discrete mode shape
signal. In order to reduce these adverse distortions, the mode shape signal is expanded, i.e. u→ f , in
accordance with the isomorphism approach [21].
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Figure 2. CWT of noise-contaminated (65 dB) �rst bending mode shape. (a) Undamaged state.
(b) Damaged state (crack at x/L = 0.4).

11th International Conference on Damage Assessment of Structures (DAMAS 2015) IOP Publishing
Journal of Physics: Conference Series 628 (2015) 012121 doi:10.1088/1742-6596/628/1/012121

5



In the choice of wavelet type, a crucial parameter is the number of vanishing moments, cf.
equation (2). A wavelet with m vanishing moments is blind to polynomials up to order m− 1, hence
implying that a wavelet with a minimum of four vanishing moments would, theoretically, provide the
best results when analysing the �rst bending mode shape. However, extensive amount of di�erentiation,
recall that the CWT yields pseudo-derivatives, would yield detrimental magni�cation of the border
distortions, even when applying the isomorphism approach. Consequently, it is chosen to use a second-
order Gaussian wavelet as this has been found to provide a suitable tradeo� between discontinuity
enhancement and border distortion magni�cation. In �gure 2, CWTs of noise-contaminated editions
of the �rst bending mode shape of the undamaged beam and the damaged one are presented for the
wavelet scale interval a ∈ [1,120].

3.2.2. GDTKEO settings. As brie�y mentioned in subsection 2.2, the lag parameter, κ, serves to
alleviate noise contributions. To determine an optimal value of κ, a simple approach based on the
root-mean-square (RMS) is proposed. The plot in �gure 3a illustrates the principle; the mean of
the CWTs (at maximum wavelet scale) from the training state is signal-processed by means of the
GDTKEO with di�erent κ values. Then, the RMS is calculated for each of the derived Ψa|a=120

signals, as plotted in �gure 3a, and κ = 342 is chosen as the value at which the local minimum occurs.
By using this setting for the GDTKEO and applying it to the wavelet transforms seen in �gure 2,
the results presented in �gures 3b and 3c are obtained. Clearly, the damaged-induced discontinuity is
located along with other irregularities, hence emphasising the need for statistical discrimination.

3.2.3. Outlier analysis. It is chosen to present outlier analysis results for four measurement
points/sensor locations, namely x/L = 0.04, x/L = 0.4 (damage location), x/L = 0.5, and x/L = 0.8.
Here, the statistical model for each location, composed of Pj and Σj , have been trained by means of
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Figure 3. GDTKEO applied to CWT of noise-contaminated (65 dB) �rst bending mode shape.
(a) Selection of κ. (b) Undamaged state for κ = 342. (c) Damaged state for κ = 342 (crack at
x/L = 0.4).
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Figure 4. T 2
j -statistics on the basis of |Ψ| (κ = 342) for undamaged (test number 1-100) and damaged

(test number 101-400) states. (a) x/L = 0.04. (b) x/L = 0.4 (damage location). (c) x/L = 0.5.
(d) x/L = 0.8. The dashed, horizontal lines mark the thresholds and the red circles designate type I
errors.

the relevant signal bands from the chosen 200 undamaged signals. It is found, for all four locations,
that the two �rst principal directions contain above 90 % of the variance, and therefore it is chosen
only to use these two, thus Pj ∈ R200×2 and Σj ∈ R2×2. The corresponding thresholds are computed
on the basis of the relevant bands from the 200 randomly chosen signal-processed mode shapes from
the undamaged state, i.e. Zj ∈ R200×120.

With the training and threshold computation completed, the testing is conducted. First, the relevant
bands from the remaining 100 undamaged signal-processed mode shapes are tested, followed by the
corresponding bands from 300 damaged counterparts. In �gure 4, the results are presented. Evidently,
the data from the healthy con�guration, i.e. test number 1-100, are generally classi�ed as inliers. Only
a few type I errors, i.e. false outlier classi�cation, are obtained. This is, however, to some extent
expectable due to the probabilistic nature of the threshold computation. For test number 101-400,
where the beam is damaged at x/L = 0.4, the signal-processed mode shape bands at x/L = 0.4 are
all classi�ed correctly as outliers, see �gure 4b. For the three remaining locations, the signal-processed
mode shape bands are generally classi�ed as inliers, meaning that the damage localization method
yields unambiguous localization of the crack.

As stated previously, the GDTKEO used to obtain the results presented in �gure 4 is assigned a
lag parameter of κ = 342. If κ = 1, the GDTKEO reduces to the DTKEO implemented in the method
proposed in [13]. To demonstrate the improvement obtained by using the GDTKEO with a proper
selection of κ, instead of the DTKEO, a damage localization analysis analogous to that conducted in
this paper (�nalised with the results presented in �gure 4) is conducted for κ = 1. The �nal outlier
analysis results, which are seen in �gure 5, clearly illustrate the signi�cant improvement obtained by
implementing the GDTKEO with a proper κ.
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Figure 5. T 2
j -statistics on the basis of |ψ| for undamaged (test number 1-100) and damaged (test

number 101-400) states. (a) x/L = 0.04. (b) x/L = 0.4 (damage location). (c) x/L = 0.5.
(d) x/L = 0.8. The dashed, horizontal lines mark the thresholds and the red and blue circles designate
type I and II errors.

4. Conclusion

The present paper documents a proposed damage localization method whose principle is to statistically
interrogate changes in signal-processed mode shapes with respect to localization of a damage. As
such, the method lacks the need for measuring the excitation input and is completely independent of
numerical models.

The applicability of the method has been demonstrated in the context of analytical work with a
free-vibrating Euler-Bernoulli beam. Here, 300 noise-contaminated (SNR = 65 dB) editions of the
�rst bending mode shape of the undamaged state and 300 noise-contaminated editions of a damaged
state have been signal-processed by means of CWT and subsequent application of a GDTKEO. 200 of
the signal-processed mode shapes from the undamaged state have been randomly chosen for training
of the statistical baseline model, against which the remaining 100 signal-processed mode shapes from
the undamaged state and the 300 signal-processed mode shapes from the damaged state have been
tested. Hereby, it is found for the damaged state that the T 2-statistics derived for the signal bands
at the damage location are consistently labeled as outliers, whereas the T 2-statistics derived for the
remaining locations are classi�ed correctly as inliers (except for a single case). For the undamaged
state, only three T 2-statistics are falsely classi�ed as outliers, thus the crack can be unambiguously
localized.
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