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Abstract: Order tracking is one of the most effective algorithms to eliminate the effect of
time-varying rotational speed on the rotary machines. However, this algorithm is not suitable
for the faulty rolling bearing unless the peak time of the fault-induced impulse is set as zero
which cannot be met in the real engineering. The traditional resampling process will cause
uneven intervals between the adjacent impulse peaks in the angular domain and then affect the
envelope analysis-based diagnosis result. To solve this problem, a new resampling algorithm
with three parts is proposed: (a) linearly fitting the instantaneous rotational speed measured by
the tachometer, (b) resampling the vibration signal from the time domain to the angular domain
using the traditional method, (c) calculating the envelope deformation amount and then
compensating the resampled result. The effectiveness of the proposed method has been

validated by both the simulated and experimental bearing vibration signals.

1. Introduction
Rolling element bearings have been widely used in different rotating equipment. Reliable bearing
conditional monitoring is crucial to avoid the failure or degraded performance of the whole machine
[1]. In real engineering, the bearings always operate under time-varying speed which will then make
the bearing vibration signal non-stationary and the techniques based on the assumption of constant
rotating speed inapplicable [2, 3]. To solve this problem, the order tracking algorithm was proposed to
remove the effects of speed fluctuation and smearing of the spectrum by resampling the original
vibration signal at a constant angle increment and converting the non-stationary signal in time domain
into the stationary one in angular domain [4-6].

However, when the resampling algorithm is used to analysis the rolling bearing with time-varying
rotational speed, it will cause the envelope deformation [7] which may then effect the final bearing
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fault diagnosis. To solve this problem, a new resampling algorithm is proposed to compensate the
deformation. At first, the distribution character of the peak time under the time-varying rotational
speed is deduced. The rules of envelope deformation is then summarized based on the analysis in [7].
And the new resampling algorithm based on the piecewise fitting and envelope deformation
compensation is finally put forward.

The rest of the paper is organized as follows: Section 2 deduces the distribution character of peak
time of bearing fault-induced impulse and presents the rules of envelope deformation caused by the
traditional angular resample algorithm. Section 3 presents the new resampling method. Section 4 and 5
examine the performance of the new resampling algorithm using the simulated and experimental data
respectively. The conclusions are drawn in Section 6.

2. The principle of envelope deformation

As proposed in [7], the envelope deformation happens when the traditional angular resampling
algorithm is used to analysis the faulty rolling bearing signal under the time-varying rotational speed.
And the essential reason of this phenomenon is the existence of peak time and the corresponding effect
on the traditional angular resampling algorithm. The distribution character of the peak time under
time-varying rotational speed is firstly obtained, and the envelope deformation rule is then presents
with the assumption of the constant peak time.

2.1 The distribution character of the peak time

In general, when a rolling element bearing has a local fault, the contact between the defect and its
mating surface will generate an impulse with a short duration in which the peak time (t,) is defined as
the time interval between the starting point and the maximum value. In this section, the real response
of the bearing fault impulse is simulated with the time response of the undamped spring-mass system
to a half sine wave excitation. Eq. (1) represents the impulse and the corresponding response can be
divided into two phase: load stage (0 </ < T=n/@) and unload stage (t > T=n/w).

Lsinax(0<i1<T =7/ w)
(1 ={ (1)

O(others)

where T and @ are the duration time and the angular frequency. Using the Duhamel's integral, the peak
time can be expressed:
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According to the Eq. (2), if the w is bigger than the w,, the load time is relatively small. So the
maximum value happens after the load time. On the contrary, if the @ is smaller than the w,, the peak
value happens before the load time. To evaluate the distribution character of peak time under
time-varying speed, the parameters in Eq. (2) should be given. The @ can be expressed by the rolling
bearing parameters:
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where, lug is width of local fault; vy, is the linear velocity fault point: @searng is the rotational
frequency of the rolling bearing; dpie is the corresponding pitch diameter. So, the Eq. (2) can be

expressed by:
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Without loss of generality, the specific value of all the parameters in Eq. (4) are set as follow: the
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higher resonance frequency is set as 10000Hz, the varying range of the rotational speed is set as an
extremely wide interval of [0 10000Hz], p, dpirci and Iz are separately set as 1, 33.5 mm and | mm.
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Figure 1. The rule of peak time changing with bearing rotational frequency

In Fig. 1, The blue line and red line separately represent the first and the second expression of
Eq.(4). And the solid part represents the real change law of the peak time. In this way, the peak time
actually changes in the interval of [n/w,, 2n/w,]. Considering the resonance frequency @, is relative
high, the corresponding value range are usually narrow. As for the simulation mentioned above, the
specific value range is [3.14x10%, 6.28x107*] which is extremely narrow. Based on the aforementioned
analysis, we assume the peak time as a constant value with the time-varying rotational speed.

2.2 The presentation of the envelope deformation phenomenon

If the peak time can be considered as a constant value with the time-varying bearing rotational speed,
the peak times at the higher rotational speed will be lengthened more significant than the one at lower
rotational speed in the angular domain using the traditional resampling algorithm. This phenomenon of
unequally spaced peaks is called envelope deformation which will then affect the envelope spectrum
and the fault diagnosis of rolling bearing. In this subsection, an analytical model is constructed to
specify this kind of the envelope deformation where the half-sine wave is used to simplify the
fault-induced impulse, and the projection of the ascending segment on the base is the peak time. Fig.
2(a) is the schematic diagram of envelope deformation theory using the simulated signal of faulty
rolling bearing with a constant accelerator. 71, £, and f3 are the start moments of the adjacent three
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impulses, t1,, 12, and 13, are the peak moments. Just because the peak time does not change with
rotational speed, ti, - 15, tp - 125 and 635 - 13 should equal to each other. Fig. 2(b) is the resampled
angular waveform, in which ¢, @2, and @3 are the corresponding start phases, ¢1,, @2, and @s,, are
the peak phases. In the angular domain, the start phases are equally spaced (Ap>=Ag@.3/2), however,
the peak phases are not.(¢1p - @157 @2p— Q2.5 F P30 — P3.5).
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Figure 2. The schematic diagram of envelope deformation theory: (a) time-domain waveform with
rotational speed up; (b) outcome of angular resample
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Figure 3. The schematic diagram of the envelope deformation: (a) the waveform of simulated faulty
bearing vibration; (b) the angular resampling outcome using traditional order tracking algorithm

Figure 3 gives examples to visualize the envelope deformation. In Fig. 3(a), the black line
represents the signal with a constant rotational speed and the red and blue signals are separately
speed-up and speed-down signal with the acceleration of 30 and -30. As for the resampled results in
the angular domain shown in Fig 3(b), we can see that the start phases of all the impulses are equally
spaced and the peak phases are not which can be used to testify the existence of the envelope
deformation.

Fig 4(a) and (b) are the corresponding order spectrums of the speed up and speed down
situations. The theoretical positions of the fault characteristic frequency and its harmonics are ‘3°, 6’
and “9’ which are displayed by vertical dash lines. As shown in Fig. 4(a) and Fig. 4(b), the peaks will
both deviate from their theoretical positions. This can prove that the tradition angular resampling
algorithm will the envelope deformation will then affect the rolling bearing fault diagnosis
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Figure 4. The order spectrums of simulated faulty bearing vibration signal under different laws of
time-varying rotational speed: (a) positive acceleration; (b) negative acceleration

3. The revised angular resampling algorithm
As mentioned in [7], the relative deformation value of the nth impulse is listed as follow:

A@l.u: ( Q:.p - @n..\') _( ;0]_;1 - q’ls):( (2{’.{”6(9.\' + IF/;"l‘_,,.s')”: - nl,.s') tp (S)

where, ¢, and @., are separately the start phase and the peak phase of the nth impulse, ¢, and ¢, are
the start phase and the peak phase of the first impulse, a is the acceleration , m; is the initial rotational
speed, ¢, is the peak time. Following Eq. (5), Table 1 gives the peak phases and the corresponding
relative deformation value:

Table 1: The peak angle and relative deformation of the impulse waveforms

Peak phase Relatively deformation
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According to the peak phases and relatively deformation values listed in Table 1, it is found that
if we subtract the relatively deformation value from the corresponding peak time, the adjusted peak
time are equally spaced. Ag 'y:1, is the phase interval between the adjusted nth phase peak and the
n+1th phase peak.
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As shown in Eq. (6), the phase interval after compensation become a constant value. In this way,
the aforementioned envelope deformation phenomenon can be compensated by subtracting the relative
deformation value from the x-axis of resampled angular waveform. In this paper, we call it the ideal
compensation value. In real application, this ideal compensation value can be rewritten as follow:
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where, ¢.; is the compensation value of angular / in angular domain, @ is the corresponding
acceleration, Ag; is angle the rolling bearing has rotated, »; is the initial rotational speed.
The a; and ¢, can be determined by Eq. (8) and (9)
o _1Fy - I,
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where, [F;; and IF; are the corresponding instantaneous rotational speed measures by the speed sensor.
The value of #, is the mean of interval of [t/w,, 2n/w,] mentioned in section 2.1. @, is the resonance
frequency whose value can be determined by the kurtogram-based spectrum kurtosis[8-10].

Above all, the revised resampled algorithm is presented as follow:
STEP 1: Determine the variation trend of IF piecewise.

According to the number of the discrete IFs measured by the speed sensor, the raw signal is
divided into # segments. We assume the acceleration of every segment as a constant value a; (0 <i <
n-1), the IF in every segment can be expressed by:

IF(:)=k,-r+b,-(L](i—l)<r< Tii) (10)
e

n_

where, T is the time duration of the signal, » is the number of the segments, k; and b; are the
coefficients.

STEP 2: Determine the angular axis of every time-domain sampled point in angular domain.

r

A
Angle(t)=) ———(IF(i)+IFGi+ D)+ [ ayt+bydt (11)
i=1 2("'[) T P
n-l
where £ is the number of the segments before 7.
STEP 3: Calculate the compensation value.
Angle (N Qa,Ag,+m)"? —ny)1,
' _IF, (12)
=((2%Angle(1)+ IF*(1))"? —1F(1))2—”((i(f—1) <t <if))
T/(n-1) 3w, n-1 n-1
STEP 4: Compensate the envelope deformation.
Angle’(1)=Angle() — Angle (1) (13)
STEP S: Determine the sample points in the angular domain.
g 3 n-1 T
S, _Js > (IF(7) + IF(i +1)) 14)

IF!mse . [Fbme .;'=l 2(”'1)

where £/IF s is the sample rate of the angular domain, IF s is minimum of the measured IF.
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STEP 6: Complete the resample process using the interpolation algorithm.

4. Simulation analyses

In this section, the simulated signal in Fig. 3(a) are used to testify the effectiveness of the propose
algorithm. In specific, the change rules of the red and blue are separately f{£)=30¢+20 and f{#)=-30¢+20.
Fig. 5 and Fig. 6 show the results using the algorithm described in Section 3. Fig. 5(a) and 6(a) are the
compensation values; Fig. 5(b) and 6(b) are the corresponding envelope spectrum. It is obvious that
the peaks representing fault characteristic frequency and corresponding harmonics in Fig. 5(b) and 6(b)
are all compensated to its theoretical values, ‘3°, ‘6" and ‘9. It is proved that the revised angular
resampled algorithm are effective both under speed up and speed down situations.
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Figure 5. Speed-up model: (a) the compensation values; (b) the order envelope spectrum
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Figure 6. Speed-down model: (a) the compensation values; (b) the order envelope spectrum

5. Experimental tests
The effectiveness of the proposed algorithm is further tested using a set of experimental bearing
vibration signals with fault in the outer race.
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Figure 7. Raw signal with the increasing speed Figure 8. The measured IF of the rolling bearing

The corresponding rotational frequency of the rolling bearing increases from 38 Hz to 60 Hz. The
sampling rate is 24,000 samples/s. The type of rolling bearing is ERI6K, the fault characteristic
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frequency equals to 3.45x%f,. The data lasts for 4.3 s. Fig. 7 and Fig. 8 are separately the waveform and
the corresponding IF. Fig. 9 shows the resampled waveform using the revised resampling algorithm
and the corresponding order envelops spectrum is shown in Fig.10. For comparison, Fig. 11 shows the
order envelope spectrum using the traditional resampling algorithm. In Fig. 10 and 11, there both exist
three vertical dash lines which represent theoretical fault characteristic frequency and its second and
third harmonics. Their x-axis coordinates are 3.45, 6.9 and 10.35.
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Figure 9. The resampled waveform using the revised resampling algorithm

It is obvious that the peaks representing the fault characteristic frequency and its harmonics in Fig
11 are not on their theoretical value. In Fig. 10, the revised resampling algorithm can compensate the
envelope deformation and the corresponding fault characteristic order and harmonics are all adjusted
to the theoretical value. This can testify the effectiveness of the proposed algorithm.
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Figure 10. The order envelope spectrum Figure 11. The order envelope spectrum
using the revised resampling algorithm using the traditional resampling algorithm

6. Conclusions

A revised resampling algorithm has been proposed to deal with the envelope deformation phenomenon
caused by the traditional resampling algorithm. And the corresponding order envelope spectrums are
more accurate than the ones obtained using traditional resampling algorithm. It is proved that this
revised resampling algorithm is effectiveness under both the speed up and speed down situations.
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