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Abstract. Fault diagnosis of localized bearing defects under non-weight-dominant conditions 

is studied in this paper. A theoretical model with eight degrees of freedom is established, 

considering two transverse vibrations of the rotor and bearing raceway and one high-frequency 

resonant degree of freedom. Both the Hertzian contact between rolling elements and raceways, 

bearing clearance, unbalance force and self-weight of rotor are taken into account in the model. 

The localized defects in both inner and outer raceways are modeled as half sinusoidal waves. 

Then, the theoretical model is solved numerically and the vibrational responses are obtained. 

Through envelope analysis, the fault characteristic frequencies of inner/outer raceway defects 

for various conditions, including the weight-dominant condition and non-weight-dominant 

condition, are presented and compared with each other.  

1. Introduction 

Rolling element bearings are important components of rotating machinery. Localized defects are 

frequently found in inner/outer raceways. The growth of localized defects can cause the fault of rolling 

bearings and even severe accidents to the rotating machinery if undetected early. For years, extensive 

efforts have been devoted to the modelling of localized defects and then predict their effects upon the 

vibrational response of the bearing system [1-3].  

Most current studies focused on the bearing systems under the weight-dominant condition [4-6]. The 

load zone due to the self-weight of the rotor is time-invariant. The rolling elements periodically pass 

through the load zone and impact with the inner/outer raceway defects. The fault characteristic 

frequencies for the defects could be predicted accordingly.  

However, the self-weight might not be the dominant load in many rotating machinery, such as the 

vertical rotors, lightly weight rotors, and et.al. In these rotors, the unbalance force is the dominant load, 

and cause the load zone of the rolling bearing varies with time. In this case, the impacts between the 

rolling element and raceway defects become more complicate. Obviously, the fault characteristic 

frequencies would differ distinctly with that of the weight-dominant case. 

Therefore, fault diagnosis of localized bearing defects under non-weight-dominant conditions is 

studied in this paper. A theoretical model with eight degrees of freedom is established, considering 

two transverse vibrations of the rotor and bearing raceway and one high-frequency resonant degree of 

freedom. Both the Hertzian contact between rolling elements and raceways, bearing clearance, 

unbalance force and self-weight of rotor are taken into account in the model. The localized defects in 

both inner and outer raceways are modelled as half sinusoidal waves. Then, the theoretical model is 
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solved numerically and the vibrational responses are obtained. Through envelope analysis, the fault 

characteristic frequencies of inner/outer raceway defects for various conditions, including the weight-

dominant condition and non-weight-dominant condition, are presented and compared with each other. 

Finally, some conclusions are summarized. 

2. Theoretical model for rotor-bearing system with localized bearing defects 

2.1. Nonlinear restoring force of rolling bearing with localized defects 

The schematic diagram for a deep grove ball bearing is shown in Fig. 1. Generally, the outer race is 

fixed on the pedestal. The inner race, connected with rotor, rotates under constant angular speed s .  

The coordinate for dynamic analysis is O X Y  . There are two degrees of freedom for the inner 

race and rotor, i.e. ,s sx y . The mass and damping are ,s sm c , and the stiffness is provided by the 

nonlinear Hertz deformation between the ball and raceways. The outer race and pedestal also have two 

degrees of freedom, i.e. ,p px y . The corresponding mass, stiffness and damping are , ,p p pm k c . 

Besides, in order to simulate the high frequency resonant response of the rolling bearing, a spring-

mass-damping system ( , ,r r rm k c ) with high resonant frequency is added to the model [3], as shown in 

Fig. 1.  

 

Figure 1. Defective bearing model 

The location angle of the j th ball is    2 1j bc bt t j N     , where bN the number of balls, 

bc the orbital speed of the ball. Under pure rolling conditions, the orbital speed of deep grove rolling 

bearing is expressed by  1 2bc s b bd D   , in which bd  the ball diameter and bD the pitch 

diameter of the bearing. According to the geometric relations shown in Fig. 1, the contact deformation 

for the the j th ball at time t  is 

   cos sinj s p j s p j lx x y y c                                                            (1) 

Where lc denotes the radial clearance.  

A localized defect in the outer race is considered and shown in Fig. 1. The defect is modelled by a half 

sinusoidal wave, and its location, size and depth are, respectively, expressed by do , do  and oh .  

Similarly, the location, size and depth for the inner race defect are denoted by di , di  and ih . When 
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the ball is contact with the defect, the contact deformation should be modified to take into account the 

additional clearance induced by the defect. For the rolling bearing with outer race defect, the contact 

deformation could be rewritten as 

     

   

cos sin sin

cos sin

s p j s p j l o j do do j do do

doj
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x x y y c h
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          (2) 

As the outer race is fixed, so the location angle of the defect do  is also constant. However, as the 

inner race is rotating, so the inner race defect also rotates with time. Its location angle should be 

di s it    , in which i  the initial angle with respect to the X  axis at time 0t  . Thus, when the 

inner race defect is considered, the contact deformation could be expressed similar with Eq. (2), while 

the parameters do , do  and oh  should be substituted by di , di  and ih . 

According to the Hertz contact theory, the contact force between the inner race and ball is given by 
3/2

j j c jQ K  , in which cK  the contact stiffness, j  the force coefficient. For 0j  , 1j  ; 

otherwise, 0j  . The contact stiffness cK   is related to the geometry and material property of the 

contact pairs, and could be solved from Harris’ monograph. Considering the number of balls in contact, 

the total restoring forces of the rolling bearing in the two axes are expressed as follows 
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2.2. Equations of motion for the rotor-bearing system 

A rigid rotor system supported by two deep grove rolling bearings is shown in Fig. 2. Thus, the 

equations of motion for the system could be derived as follows 
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                                (4) 

In which , ,pi pi rix y x  ( 1,2i  ) represents the degrees of freedom for the bearing 1 and 2, ,pi rim m , 

,pi ric c  and ,pi rik k  ( 1,2i  ), respectively, denote the mass, damping and stiffness of bearing 1 and 2. 

Obviously, considering the degrees of freedom of the rotor, pedestal and high-frequency spring-mass 

system, there are eight degrees of freedom for the rotor-bearing system. Due to the nonlinear restoring 

forces induced by the rolling bearing, Eq. (4) could only be solved by the numerical integration 

method. In the following section, we will show the fault features of the dynamic response for the 

system under various load conditions, including the non-weight-dominant condition. 
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Figure 2. Rotor-bearing model 

3. Simulations and discussions 

In the simulation, the parameters for the rotor-bearing system are shown in Table. 1. Two types of load 

conditions are considered: (1) only weight condition (just the weight-dominant condition); (2) only 

unbalanced force condition (just the non-weight-dominant condition). In the following analysis, the 

envelope spectra for the rolling bearing without defect, with inner race defect and with outer race 

defect are obtained to show the values and distributions of fault frequencies. 

Table 1. System parameters   

Parameters Values Parameters Values 

Rotor mass (Kg) 3 Pedestal mass (Kg) 12.638 

Rotor damping (N/s) 1200 Pedestal stiffness (N/m) 15e6 

Rotor stiffness (N/m) 1e6 Pedestal damping (N/s) 2210 

Unbalanced mass (Kg) 0.01 Spring’s mass (Kg) 1 

Mass eccentricity (m) 5e-4 Spring’s damping (N/s) 9500 

Bearing pitch diameter (m) 0.0449 Spring’s stiffness (N/m) 8e9 

Ball diameter (m) 0.0072   

Contact stiffness (N/m
3/2

) 8e9   

Number of balls 8   

Radial clearance (m) 1e-5   

3.1. Only rotor self-weight condition (weight-dominant condition) 

The unbalanced force excitation is ignored in this section in order for comparisons with the following 

analysis. Rotor speed is 20 rad/s, and the localized defect parameters are assumed to be  0.1do rad  , 

1 3do e rad    and 1 3oh e m   for the outer race defect; 0.1di rad  , 1 3di e rad    and 

1 3ih e m   for the inner race defect. The envelope spectra for the system with outer race defect and 

inner race defect are, respectively, shown in Fig. 3. It is shown that the fault characteristic frequencies 

are consistent with current results. For the outer race defect, the characteristic frequencies could be 

expressed by onf  ( 1,2,3,...n  ), where o b bcf N   denotes the ball passing frequency. When the 

inner race has a localized defect, one can see from Fig. 3(b) that the characteristic frequencies are the 
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combinations of inner race fault frequency with rotating speed, i.e. i snf m  

( 0,1,2,...n  , ..., 2, 1,0,1,2,...m    ). These frequencies are also identified and marked in Fig. 3.  

 

 

Figure 3. Envelop spectra for the system under only weight condition: (a) outer race defect; (b) 

inner race defect. 

3.2. Only unbalanced force excitation condition (non-weight-dominant condition) 

For the lightly rotor, especially the vertical rotor, its weight might be small enough and even could be 

ignored in the analysis. In this section, only the unbalanced force is considered in the simulation. The 

envelop spectra for the system with outer race defect and inner race defect are present in Fig. 4. 

Compared with the weight-dominant condition (Fig. 3), one can see that the fault frequencies differ 

distinctly. For the outer race defect, it is shown from Fig. 4(a) that the fault frequencies are relatively 

complex. They could be summarized as: o snf m  ( 0,1,2,...n  , ..., 2, 1,0,1,2,...m    ). When 

the inner race defect is consider, as shown in Fig. 4(b), it is shown that the fault frequencies are related 

to the inner race frequency and odd times of rotating speed, i.e. i snf m  

( 0,1,2,...n  , ..., 4, 2,0,2,4,...m    ). Although the fault frequencies are still the combinations of 

inner race frequency and rotating speed, the difference is that only the odd times of rotating speed are 

found. 
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Figure 4. Envelop spectra for the system under only unbalanced force condition: (a) outer race 

defect; (b) inner race defect. 

4. Conclusions 

The fault characteristics of a rolling bearing with localized defects under non-weight-dominant 

conditions are studied. Through envelope analysis, the fault characteristic frequencies of inner/outer 

raceway defects for various conditions, including the weight-dominant condition and non-weight-

dominant condition, are presented and compared with each other. It is shown that the fault frequencies 

for the non-weight-dominant condition differ distinctly with that of the weight-dominant condition. 

Experiments on a vertical rotor with defective rolling bearing are being conducted to verify the 

theoretical results. 
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