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Abstract. Structural health monitoring acquires structural information through numerous 
sensor measurements. Vibrational measurement data render the dynamic characteristics of 
structures to be extracted, in particular of the modal properties such as natural frequencies, 
damping, and mode shapes. The stochastic subspace system identification has been recognized 
as a power tool which can present a structure in the modal coordinates. To obtain qualitative 
identified data, this tool needs to spend computational expense on a large set of measurements. 
In study, a stochastic system identification framework is proposed to improve the efficiency 
and quality of the conventional stochastic subspace system identification. This framework 
includes 1) measured signal processing, 2) efficient space projection, 3) system order selection, 
and 4) modal property derivation. The measured signal processing employs the singular 
spectrum analysis algorithm to lower the noise components as well as to present a data set in a 
reduced dimension. The subspace is subsequently derived from the data set presented in a 
delayed coordinate. With the proposed order selection criteria, the number of structural modes 
is determined, resulting in the modal properties. This system identification framework is 
applied to a real-world bridge for exploring the feasibility in real-time applications. The results 
show that this improved system identification method significantly decreases computational 
time, while qualitative modal parameters are still attained.  

1. Introduction 
Performance of civil infrastructure directly affects public safety and society cost. Civil infrastructure 
refers to the integration of various systems such as buildings, bridges, transportation networks, lifeline, 
etc. Components in such systems need to be functional; otherwise, a huge amount of economic loss 
and dead lives would occur and impact the entire society. For example, the I-35W Mississippi River 
Bridge collapsed on August 1, 2007, resulting in 13 people killed and 145 people injured. A 
replacement bridge, the I-35W Saint Anthony Falls Bridge, was then constructed and opened on 
September 18, 2008. The estimated users’ economic loss was US$71,000 to US$220,000 a day, while 
more than 50,000 users needed to reroute [1]. This example demonstrates that deficient and aging 
infrastructure systems require diagnosis of present conditions to prevent catastrophic failures. Thus, 
structural health monitoring (SHM) is of need to early identify these problems in structures [2, 3]. 
Operational modal analysis is to extract the dynamic characteristics of structures based on the 
structural vibration responses. These dynamic characteristics are composed of natural frequencies,  
1 Research Associate, Dept. of Civil Engineering, National Taiwan University, Taipei, Taiwan. 
2* Professor (corresponding author), Dept. of Civil Engineering, National Taiwan University, Taipei, Taiwan.  

11th International Conference on Damage Assessment of Structures (DAMAS 2015) IOP Publishing
Journal of Physics: Conference Series 628 (2015) 012010 doi:10.1088/1742-6596/628/1/012010

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 
 
 
 
 
 

damping ratios, and mode shapes. Deviations in these dynamic characteristics reflect the changed 
properties of structures. Detailed inspection may be required for the structures. A number of 
researchers applied system identification to real-world structures for operational modal analysis such 
as Farrar and James [4], Brownjohn [5], Lynch et al. [6], Siringoringo and Fujino [7], Weng et al. [8] 
and Jang et al. [9]. With growth of sensing technology, structural health monitoring has drawn a lot of 
attentions to researchers in order to assure structures of their serviceability and safety. Structural 
integrity can be then studied through operational modal analysis to the sensor measurements of 
structures.  
 
Due to unavailability of input excitation, the operational modal analysis is directed to the stochastic 
system identification. This type of system identification methods is emphasized on performance 
assessment of structures using measured outputs. In terms of time-domain approaches, one of the 
popular methods is stochastic subspace system identification (SSI) proposed by Van Overschee and 
De Moor in 1991 [10]. This method utilizes the extended observability to derive modal parameters 
Moreover, Peeters and De Roeck in 1999 further extended the SSI method to improve computational 
efficiency [11]. Peeters and De Roeck in 2001 also proposed the stabilization diagram for SSI to 
enhance the quality of identification results [12]. Even though such nice methods are developed for 
operational modal analysis, both identification efficiency and quality are still a concern in practice. 
 
One of common seen problems in SSI is the noise modes obtained in results. This noise modes may be 
reduced or removed by means of time series analysis prior to system identification such as the 
Singular Spectrum Analysis (SSA). Numerous fields has employed SSA to investigate the trend and 
periodic components to various components [13-16]. Moreover, SSA can be extended to multi-channel 
time series. For structural health monitoring applications, a large amount of data are measured from 
structures. When applying SVD to the Hankel matrix, the loading in computation becomes a problem. 
Further reductions on the dimension of the Hankel matrix is a solution to expedite the computational 
rate as well as to be suitable for structural health monitoring problems. 
 
Another possible reason to result in noise modes in identification results is the orthogonal projection. 
Yang and Nagarajaiah in 2014 found that the outliers in measure signals can contaminate 
identification results and introduce noise modes to be obtained [17]. Moreover, the low-amplitude 
signals in measurements can also induce the difficulty in the calculation of a subspace through the 
orthogonal projection. To effectively eliminate the noise modes in identification results, these 
unfavourable components need to be removed in advance.  
 
As introduced in [12], a stabilization diagram is helpful for determining true modes in identification. 
However, establishing a stabilization diagram may take a large amount of time, especially state-space 
realization. Many studies developed a series of methods that allow determining the number of states 
[18-20].  The resulting number of states from these methods are tended to be overestimated. Thus, 
these methods can be employed in a stabilization diagram to limit the numbers of states used. To 
accelerate the determination of true modes, modifications should be made to a stabilization diagram.  
 
In this study, an improved stochastic subspace system identification method is developed. This method 
consists of 1) signal preprocessing using SSA, 2) forming a modified Hankel matrix with a reduced 
dimension, 3) effectively orthogonal projection to obtain multiple subspaces, and 4) extraction of 
modal parameters from a given range of numbers of states. The signal preprocessing using SSA is 
employed to reduce the noise effect in system identification as well as to retain the principle 
components in measured signals. A modified Hankel matrix is developed to eliminate the low-energy 
components in this matrix. Then, multiple subspaces are calculated using the proposed effective 
projection method. Each subspace can render a set of modal parameters. By analysing these sets of 
modal parameters, the dynamic characteristics of a structure can be obtained. Moreover, the proposed 
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method is evaluated by field measurements from a cable-stayed bridge. The identification results 
illustrate that the efficiency and quality of the proposed stochastic subspace system identification 
method suppress those of the conventional SSI.  

2. Framework of Proposed System Identification Method 
Figure 1 illustrates the improved stochastic subspace system identification method. This improved 
method contains four sequential components: 1) preprocessing, 2) forming Hankel matrix, 3) obtaining 
subspaces through projection, and 4) determining stable modes. The signal preprocessing eliminates 
signal trends and offsets and prepares denoised signals. The Hankel matrix is then formed, and only 
those columns with higher norms are retained. 
In comparison to the convectional stochastic 
subspace system identification, the improved 
method calculates several subspaces instead of 
one. The state-space system and measurement 
matrices are derived based on the extended 
observability matrix that is calculated from a 
subspace. A range of orders (or a range of 
numbers of states) are used to examine 
different sets of identified modes, and the 
range is determined by proposed criteria. 
Finally, a number of modes are obtained with 
respect to subspaces and orders. The stable 
modes are determined using a similar 
approach to the stabilization diagram. 
 
In this study, the proposed system identification method is developed in accordance to the stochastic 
state-space model for a structure. The stochastic discrete-time state-space model is defined by 
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where x and y are the state and output measurement vectors at time step, k; Ad and Cd are the system 
and measurement matrices in the stochastic state-space representation; and w and v are the input and 
output noise. The time span is defined as [ ]1,k N∈  where N is the total number of samples. 

2.1 Pre-processing 
Measured signals from structures are sometimes distorted or contaminated by drift, offset, and noise. 
A drift and offset can be corrected by a simple function such as low-order polynomial function and 
piecewise linear functions. Noise can be reduced or eliminated by filtering or time series analysis. 
Downsampling signals to the frequency range of interest is an approach to limit the frequency content 
in low frequencies, and then noise in high frequencies can be reduced. Another method is to utilize the 
Multi-channel Singular Spectrum Analysis (MSSA). MSSA consists of three steps: embedding, 
singular value decomposition, and reconstruction [16]. The basic concept of MSSA is to find a 
transformation matrix that satisfies 
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Figure 1.  Framework of improved stochastic 
subspace system identification. 

11th International Conference on Damage Assessment of Structures (DAMAS 2015) IOP Publishing
Journal of Physics: Conference Series 628 (2015) 012010 doi:10.1088/1742-6596/628/1/012010

3



 
 
 
 
 
 

where Y is the extended Hankel matrix (or the delay coordinates) with a specific delay, h; l is the 
window length each column vector; nc is the number of delays in the row; T is the transformation 
matrix; and (I-T) indicates the noise or less significant components in the Y space. The transformation 
matrix represents the mapping of most significant components in the space of the measurements, y[k]. 
 
Embedding in SSA is to form an extended Hankel matrix such as Y in Eq. (2). In the SSA or MSSA 
theory, h in Eq. (2) is typically equal to 1; l should be in a range of 2~N/2; and nc is equal to N-l+1. To 
reduce the dimension in embedding, an additional parameter, h, is introduced. A smaller size of the 
extended Hankel matrix can expedite the rest of the SSA process (e.g., singular value decomposition 
and reconstruction). When using h, some rules should be satisfied such as 
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Singular value decomposition in SSA is to obtain a transformation matrix. When Y in Eq. (2) is 
decomposed by SVD, the transformation matrix can be represented by 
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where Λ  is a matrix which contains nonnegative singular values of Y in diagonal terms; U and V are 
unitary matrices. The singular values in Λ  are in a decreasing order so that the first few column 
vectors in Um indicate the most significant components in the space of Y. Assume that the number of 
modes in noise-free structural measurements is known, and the number of significant components are 
equal to two times of number of modes; the rest of singular values are very close to zero. Consider 
structural measurements with noise, and the rest of singular values will be nonzero. For a single-
channel time series (e.g., n = 1), the variance of noise can be estimated through SVD to the covariance 
matrix of Y, given by 
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Because Y has a maximum rank equal to the row dimension, the left unitary matrix, U, in both Eqs. 
(4-5) is the same. no is assumed to be two times of number of modes, and the measurement noise is 
assumed to be Gaussian white noise. The variance of measurement noise, σ  , in this single-channel 
time series is estimated by 
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1 l

i
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≅
− ∑   (7) 

To extend the same idea in multi-channel structural measurements, Eq. (7) is modified by 

 ( )1 1

1 1n nl
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j i non nl no
σ λ

= = +

≅
−
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where jσ  is the variance of measurement noise with respect to channel. When the number of modes 
or no is unknown, Eq. (8) can be treated as a criterion to examine no. Because no ranges from 2 to l, 
only a few trial-and-error attempts are required to approach no using Eq. (8). Consequently, the 
transformation matrix is determined.     
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The final step in MSSA is reconstruction that averages out the processed measurements (e.g., TY). 
When single-channel measurements are considered and h equals 1, the reconstruction cam be 
completed by the diagonal averaging of TY [16]. For MSSA, a block-diagonal averaging method can 
be applied if h is equal to 1. When h is greater than 1, the reconstruction can be completed by a similar 
approach, counting the number of occurrences per step in Y and then averaging the signals at a step by 
this number. The reconstructed signals contains the most dominate components in a structure. 

2.2 Forming Hankel Matrix 
As described in [10], a Hankel matrix is formed in the beginning of the SSI method. Likewise to Eq. 
(2), the Hankel matrix, H, is composed of the processed measurements, given by 
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where the subscripts, “p” and “f”, denote the “past” and “future” delay coordinates, and y  is the 
processed measurements using the preprocessing methods. The purpose of forming the Hankel matrix 
is to obtain a column subspace through projection. However, the subspace may be derived a low-
resolution projection if the column vectors in H has some small numbers. Thus, the improved method 
introduces a criterion that eliminates “ill-conditioned” column vectors in H. These ill-conditioned 
column vectors can be viewed as those have lower norms. Define that the column vector has the 
maximum norm in H as hmax, and then only those column vectors having a norm greater than 

maxhhα are retained, given by 
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where mh is the number of columns in H . Utilizing Eq. (10), H  is derived with a reduced dimension, 
as well as the column vectors which may induce the projection errors are deleted. 

2.3 Projection 
The second step in the proposed SSI method is projection that allows one or multiple subspace(s) to be 
obtained. In Eq. (9), the Hankel matrix is divided into the past and future portions. As given in [10], 
the projected subspace is calculated using the past and future matrices in Eq. (10) and defined as 
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where O is the projected subspace. Consider using SVD to represent Yp and assume that Yp is a low-
rank matrix, and then Eq. (11) can be simplified as 
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where the subscripts, “m” and “0”, denote the main and null spaces. All singular values in p,0Λ are 
assumed to be close to zero. p,m

TV  in Eq. (12) is neglected because this matrix can be a similarity 
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matrix to both extended observability and controllability matrices in the SSI theory. Therefore, a 
projected subspace is derived from f p,mY V .  
 
In the SSI theory, a Hankel matrix in Eq. (9) only supports to calculate one subspace. The separation 
line in this Hankel matrix let an identical dimension of the past and future submatrices to be obtained. 
Thus, the two submatrices result in the extended observability and controllability matrices with an 
equal number of rows and columns, respectively. However, the separation line can be shifted as long 
as the resulting past and future submatrices have a number of time lags greater than the number of 
system states. This approach allows multiple subspaces to be attained and multiple sets of modal 
parameters to be compared. 

2.4 State-space Realization 
These dynamic characteristics, such as natural frequencies, damping, and mode shapes, are implied in 
the stochastic state-space representation of the structure. Because the projected subspace represents the 
product of the extended observability and controllability matrices, SVD is utilized to separate these 
two matrices. Then, the system and measurement matrices, Ad and Cd, are calculated by 
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where the subscripts, “m” and “0”, denote the main and redundant components in the product of the 
extended observability and controllability matrices; Γ  represents the extended observability matrix; ns 
is a given number of states; and ( )†

 denotes the pseudo inverse. By applying the eigen analysis to Ad, 
the eigenvalues are the complex-valued natural frequencies, and the eigenvectors represents the mode 
shapes with respect to states. In each mode, these modal parameters can be obtained by 
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where dλ is one of the eigenvalues in Ad; 
*
dλ is the complex conjugated dλ ; η  is the eigenvector with 

respect to the state vector; nω  and ξ  are the natural frequency and damping ratio; t∆ is the sample 
time; and φ is the mode shapes with respect to the output. By calculating all eigenvalues and 
eigenvectors from Ad, the modal parameters can be extracted. 

3. Application to Field Test Measurements 
The last example is to employ the proposed system identification method in a structural health 
monitoring problem of a cable-stayed bridge in Taiwan. The detailed instrumentation on this bridge 
are available from [8]. In this study, the focus is to examine the proposed system identification method 
using the ambient vibration responses, collected from the deck of the cable-stayed bridge in the 
vertical direction. As compared to the methods in [8], this study centers on the efficiency and 
qualitative results of system identification to be achieved. 
 
The parameters used in the proposed system identification method are first presented. The structural 
responses collected are velocities, and the total duration of the measurements is 150 seconds. The 
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sensor locations with respect to the bridge dimension are exhibited in Figure 2. The vertical velocity 
responses are used in the system identification. These measurements are recorded at 100 Hz. Before 
employing the recorded data in system identification, the constant offsets in the measured signals are 
removed, and the data are resampled to 50 Hz. In MSSA, the parameters, l and h, are set to be 50 and 
5, respectively. The resulting number of orders by Eq. (8) is 30. In SSI, the window length, l, remains 
the same, and the locations of separation lines are {320 336 352 368 384 400 416 432 448 464 480}. 
By exploring the power density functions of all measurements, the preliminary guess of modes is 9; 
however, the 8th and 9th modes have lower energy so that the adjusted number of modes is 7. Then, the 
range of numbers of states is 12~30 with an increment of 2. Because of these parameters, the total 
number of runs using the proposed system identification method is 110. 
 
Figure 3 shows the identified natural frequencies with the range of numbers of states between 12 and 
26. Likewise, the magenta curves represent the summation of power spectral density functions, while 
the “star” markers indicate the identified natural frequencies with respect to a separation line and 
number of states. The vertical lines are the finalized natural frequencies after cluster analysis. As 
shown in this figure, the identified modes are concentrated in low frequencies. The first peak at a very 
frequency in the power spectral density is interpreted as a suspicious mode. In the identification results, 
only a few runs show this suspicious natural frequency. The number of successfully identified modes 
is 6. To increase the success number, a higher number of states may be used. In addition, the identified 
mode shapes are drawn in Figure 4. The results are quite comparable to the study in [8], though two of 
modes are missing in this study. In comparison of computational time, 110 runs performed using the 
proposed method is about 40 seconds, while the conventional approach including the stabilization 
diagram needs at least 10 minutes using the same computer. For system identification, the proposed 
method is able to attain the computational efficiency and qualitative results. 
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Figure 2. Sensor setup for bridge deck 

measurements. 
Figure 3. Identified natural frequencies from the 

field measurements of a cable-stayed bridge. 

4. Conclusions 
This study proposed an improved stochastic subspace system identification method that can enhance 
the efficiency and quality in operational modal analysis. In this method, multi-channel singular 
spectrum analysis was employed to remove noise and uncertainties in measurements, and to estimate 
the number of states that can be used in the stochastic state-space realization. When forming a Hankel 
matrix for the stochastic subspace system identification, the low-energy components were removed by 
a proposed criterion. An efficient projection method was also developed to expedite the process of 
generating a subspace. By shifting separation lines, multiple sets of the past and future matrices can be 
obtained, and multiple subspaces were then derived. These subspaces can yield different sets of modal 
parameters to be obtained. The finalized modal parameters were determined from these sets of results 
with respect to separation line and number of states. 
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An example provided was the proposed method applied to the field measurements of a cable-stayed 
bridge. The results were quite comparable to the previous study, and the computation efficiency was 
significantly improved in comparison to the conventional stochastic subspace system identification 
method. Because of these assessments, the proposed method was applicable to be used in most 
structural health monitoring problems in terms of operational modal analysis. 
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