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Abstract. The deformed oscillators formalism plays a useful role in the study of physical
models. Specifically, many variants of deformed oscillators have been used to study of the
quantum optics, condensed matter physics, etc . . . In this paper we construct a (q,R)-deformed
crystal lattice vibration for generic atomic string and calculate statistical distribution of this
vibration. This is a fundament for study of crystal lattice vibration, which would give a base
for a new quantization proceduce.

1. Introduction
The study of q-quantum algebras and their oscillator representation [1, 2, 3, 4, 5, 6] is a direction
of actual character in theoretical physics. They find application in many problems such as
quantum inverse scattering theory, exactly solvable model in statistical mechanics, rational
conformal field theory, two-demensional field theory with fractional statistics, etc. The algebraic
structure of quantum group can be formally described as a deformation, depending on one
or more parameters of the classical Lie algebras [7, 8]. In the special limiting cases of these
parameters the quantum algebra reduce to the ordinary Lie algebras. Especially the oscillator
representation of quantum algebras has proved to be powerful for the study of the quantum
optics, condensed matter physics, etc.
The R-deformed Heisenberg algebra, which is the deformation involving the reflection operator
R(R2 = 1), was introduced by Vasiliev [9] in the context of the higher spin algebras. The
(q,R)-deformed Heisenberg algebra is combined the q-deformed algebra with the R-deformed,
which may be described as a deformation, depending on q-parameter and reflection operator
R(R2 = 1) of the ordinary Lie algebra.
The above mentioned arguments have encouraged us to consider the possibility for the
application of the quantum group concepts to the problem in the theory of solid physics.
Our aim here is to construct a (q,R)-deformed crystal lattice vibration for generic atomic string,
consider a statistical distribution in view of this vibration.

2. The (q,R)-deformed crystal lattice vibration for generic atomic string
In this section, we are using the result in our previous paper [10] to construct a (q,R)-deformed
crystal lattice vibration for generic atomic string.
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The Hamiltonian of the crystal lattice vibration for generic atomic string can be expressed
following form:

H =
∑

k∈BZ1

(
p2k
2m

+
1

2
mω2 (k)x2k

)
, (1)

where k is wave vector and
∑

k∈BZ1

is a sum on k, which is one in first Brillouin zone, the xk

is extended coordinate of atom in order k and the pk is correspondent momentum of generic
atomic string.
The creation and annihilation operators, which are to correspond to waved vector k, are form

b†k = 1√
2~ω(k)

(√
mω (k)xk − i√

m
pk

)
bk = 1√

2~ω(k)

(√
mω (k)xk + i√

m
pk

)
.

(2)

The coordinate and momentum operators can be expressed in creation and annihilation operators
b†, b as:

xk =
√

~
2mω(k)

(
bk + b†k

)
pk = −i

√
~mω(k)

2

(
bk − b†k

)
.

(3)

Using equations (1) and (3), one obtains the Hamiltonian of the crystal lattice vibration for
generic atomic string in following form:

H =
∑

k∈BZ1

~ω (k)

2

(
bkb
†
k + b†kbk

)
. (4)

The creation (annihilation) operator b†k (bk) of the equation (4) satisfy the commutation relation:

bkb
†
k − b

†
kbk = 1. (5)

The (q,R)-deformed crystal lattice vibration can be considered as nonlinear crystal lattice
vibration which its frequency depending on amplitude. Using the analogical method in the
work [11] we calculated a frequency depending on amplitude, such as:

Wqν (k) =

{
cosh

(
~bb†

)
sinh ~

+
~e~bb†

e~ − 1
ν

}
ω (k) .

Instead of amplitude dependence of frequency the Hamiltonian could be rewritten in the form
of standard Hamiltonian as:

H =
∑

k∈BZ1

~ω (k)

2

(
aka
†
k + a†kak

)
, (6)

where the creation (annihilation) operator a†k (ak) and the number operators Nk of the (q,R)-
deformed crystal lattice vibration satisfy the commutation relations:

aka
†
k′ − qa

†
k′ak = q−Nkδk,k′ + νR

[ak, ak′ ] = 0
[Nk, ak′ ] = −akδk,k′[
Nk, a

†
k′

]
= a†k′δk,k′ ,

(7)
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with R is reflection operator satisfying the following commutation relations:

Ra†k + a†kR = Rak + akR = 0, (8)

and frequence is now not depending on the amplitude.
The (q,R)-deformed state vectors in Fock space are

|nk〉qν =

(
a†k

)nk√
[nk]qν !

|0〉qν , (9)

where |0〉qν is the ground state satisfying the following conditions:

ak|0〉qν = 0

〈0 | 0〉qν = 1

Nk|0〉qν = 0

R|0〉qν = r|0〉qν
r = ±1,

(10)

using the notations:

[nk]q = qnk−q−nk
q−q−1

[nk]qν = [nk]q + qnk−(−1)nk
q−1 ν

[nk]qν ! = [nk]qν .[nk − 1]qν ... [1]qν .

(11)

Let |nk〉qν be the eigenstates of the oscillator number operator

Nk|nk〉qν = nk|nk〉qν . (12)

From (7) one sees that: The action of operators a†k and ak on the eigenstates |nk〉qν can be
chosen as

a†k|nk〉qν =
√

[nk + 1]qν |nk + 1〉qν
ak|nk〉qν =

√
[nk]qν |nk − 1〉qν .

(13)

The energy spectrum of (q,R)-deformed crystal lattice vibration of generic atomic string is given
by

H|nk〉qν = Enk |nk〉qν∑
k∈BZ1

~ω(k)
2

(
aka
†
k + a†kak

) (
a†k

)nk
√

[nk]qν !
|0〉qν = Enk |nk〉qν ,

where

Enk =
∑

k∈BZ1

~ω (k)

2

{
[nk + 1]qν + [nk]qν

}
. (14)

Hence, the energy spectrum Enk of the (q,R)-deformed crystal lattice vibration for generic
atomic string have been depended on deformed parameters in the formulation (14).
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3. The Green function for (q,R)-deformed crystal lattice vibration for generic
atomic string
The Green function for (q,R)-deformed crystal lattice vibration for generic atomic string is

defined as the statistical distribution of
(
a†kak

)
〈
a†kak

〉
=

1

Z
Tr
(
e−Nkβω(k)a†kak

)
, (15)

where Z is the partition function

Z = Tr
(
e−Nkβω(k)

)
=
∞∑
nk

qν 〈nk|e−Nkβω(k)|nk〉qν ,
(16)

which could be used to determine the thermodynamic properties of the system, β = 1
kT , ω (k)

is one particle-oscillator energy. The trace most be taken over a complete set of states.
The calculations based on the equation (9) give the following results:〈

a†kak

〉
=

(eβω−1)
(eβω−q)

{
1

eβω−q−1 + ν
eβω+1

}
.

In the limit q → 1 and ν → 0, this gives〈
a†kak

〉
= 1

eβω−1 ,

which is just the usual Bose-Einstein formulae.

4. Conclusion
In this work, we present the results of our primary calculations which have been performed on the
model of (q,R)-deformed crystal lattice vibration that can be realized by several symmetric and
asymmetric potentials in solid systems such as Rogers-Szegö and Stieltjes-Wigert polynomials.
The most important properties of potentials in the solid systems are the finite number of energy
levels and the non-equal steps between energy levels that would not be described by the model of
harmonic oscillators, however, that are possible to transform into the model of (q,R)-deformed
harmonic oscillators by one-to-one mapping. Our results provide the initial powerful tools to
study Einstein and Debye solid models to obtain thermodynamic quantities such as Einstein and
Debye temperatures, specific heat, thermal conductivity, electrical conductivity and resistivity
with q 6= 1 that will be calculated in next works.
Our results have shown that it is possible to apply q-deformation in condensed matter physics
and to investigate the causes of other factors within materials in definition of q-deformation.
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