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Abstract. Models for deterministic quantum mechanics of Cartan-Randers type are
introduced, together with the fundamental notions of the concentration of measure theory. We
explain how the application of the concentration of measure to Cartan-Randers models provides
a framework from which it emerge 1. The invariance under infinitesimal diffeomorphisms of the
macroscopic dynamics 2. A mechanism for reduction of the quantum state and 3. The Weak
Equivalence Principle.

1. Introduction
Deterministic emergent quantum mechanics denotes several new approaches to the foundations
of quantum mechanics based on deterministic descriptions of an underlying level of physical
reality [1, 2, 4, 7, 10, 11, 12, 19]. In deterministic emergent quantum mechanics there are two
physical scales. First, there is a fundamental scale, which is usually associated with the Planck
scale. The degrees of freedom at this scale are deterministic. The second scale is associated
with quantum scales (Standard Model scale, or atomic or even molecular scales). The main
objectives of such frameworks to reproduce the mathematical formalism of quantum mechanics
as an emergent description from an underlying fundamental deterministic framework.

It is in this context of deterministic models for quantum mechanics that the author proposed
a particular type of geometric micro-statistical models [8]. This paper describes a theoretical
mechanism for quantum state reduction in the framework of such deterministic models. It turns
out that in the dynamical regime where the quantum state reduction of the quantum state
happens, the interaction driving the reduction has a strong resemblance with the gravitational
interaction. This provides a newer look to the possibility that the dynamical reduction of the
quantum state is related with the gravitational interaction.

The structure of this paper is the following. We first describe the dynamical systems that we
will consider. After this, a succinct introduction to the concentration of measure phenomena in
measure metric spaces is provided. This is a mathematical property that appears in several areas
of geometry, functional analysis and probability theory. Then we apply concentration of measure
to show how the reduction of the wave packet happens spontaneously in our deterministic models
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for quantum systems, independently of the presence of a measurement device or process. The
concentration of measure shows how the weak equivalence principle emerges as well.

2. Deterministic Cartan-Randers Models
In the deterministic models that we consider the physical degrees of freedom describe point
particles, whose evolution determines the worldsheets that are parameterized by a two
dimensional time parameter (t, τ), where τ is a time coordinate associated to a macroscopic
observer and t corresponds to a new parameter that enters in the dynamics. We called t
the internal time. These two parameters are logically independent. These worldsheets are
submanifolds of a configuration manifold which has a product structure

TM ∼=
N∏
k=1

TMk
4 , (1)

where {Mk
4 , k = 1, ..., N} are 4-manifolds diffeomorphic to a fixed 4-manifold M4 and N >> 1.

Then we have a collection of diffeomorphisms {ϕk : Mk
4 → M4, k = 1, ..., N}. The algebra of

functions FD(T
∗TM) on T ∗TM that we consider are the diagonal functions, obtained by an

algebra embedding

θ : F(T ∗TM4) → F(T ∗TM), f 7→ (f1, ..., fN ), fk = f, k = 1, ..., N. (2)

that are elements of F(T ∗TM) of the form(
(u1, p1), ..., (uN , pN )

)
7→

(
f(u1, p1), ..., f(uN , pN )

)
.

It is relevance for our considerations that the average values of the functions f ∈ FD(T
∗TM)

are well defined, that is, independent of the diffeomorphisms {ϕk : Mk
4 → M4, k = 1, ..., N}.

This can be achieved if the measure µP in T ∗TM is of the form

µP =
N∏
k=1

µ(k)P , (3)

where µ(k)P is a probability measure in T ∗TMk
4 . Then one defines

ÕCM (S, t, τ) =
∫
T ∗TM

Õ(k, t, τ)µP . (4)

The classical Hamiltonian function for our deterministic systems is of the form

H(t, τ, u, p) =

8N∑
n=1

βn(u, t, τ)pn, (5)

where u ∈ TM , p ∈ T ∗TM , TM is the configuration manifold with N >> 1 and constrained
by the requirement that, under an underlying metric structure η̂ on T ∗TM ,

∥β∥η̂ < 1. (6)

These conditions are equivalent to have bounded acceleration and speed for each fundamental
degrees of freedom. The theory that we propose goes beyond these requirements and assume the
existence of universal maximal acceleration and maximal speed. We have called these dynamical
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systems deterministic Cartan-Randers models (in short, DCRM). These models were called
Finslerian models in [8], but the new denomination is more adequate.

The two time parameters (t, τ) are used to describe a double dynamics Ut and Uτ . The
dynamical equations for this Hamiltonian for the Uτ dynamics are

dui

dτ
= βi(t, τ, u),

dpi
dτ

= −
8N∑
k=1

∂βk(t, τ, u)

∂ui
pk, i, j, k = 1, ..., 8N. (7)

The Ut should hold have several properties. There must consists of cycles. Each cycle start with
an ergodic regime follow by a concentration regime, followed by a expanding regime, followed
by the next ergodic regime, etc... The concentration regime is described by geometric flow of
the geometric structures on T ∗TM defining the Cartan-Randers system (that is, a dual metric
g ∈ ΓT (2,0)TM and a vector field β ∈ ΓTM) and must allow for equilibrium states, characterized
by the 6-dimensional hypersurface Σ =

∏
k=1 Σ4 × S3, where Σ4 is the unit hyperboloid and S3

is the 3-sphere. Although we do not propose a particular form of the flow here, neither in [8], we
will be able to extract falsifiable consequences for our theory. The research of several possible
Ut dynamics is under current investigation.

One of the techniques highlighted by G.’t Hooft is to describe classical systems quantum
mechanically, that is, using Hilbert space theory (such ideas are closely related with Koopman’s
approach to dynamical systems [13, 16]). In Hooft’s theory the standard canonical quantization
relations are adopted and used. Thus, commutators are taken for operators at equal time τ . The
quantum operators that we will consider are quantization of the diagonal algebra FD(T

∗TM).
However, in DCRM time is associated with a 2-dimensional parameter and we need to specify the
commutation relations at each fixed value of the pair (t, τ). Therefore, we adopt the following
quantization rules defined as follow,

• The values of the position coordinates {xµk , k = 1, ..., N, µ = 1, ..., 4} and the velocity
coordinates {yµk , k = 1, ..., N, µ = 1, ..., 4} of the fundamental degrees of freedom appear as
eigenvalues of certain hermitian operators {x̂µk , ŷ

µ
k , k = 1, ..., N, µ = 1, ..., 4},

x̂µk |x
µ
l , y

ν
l , µ, ν = 1, ..., 4⟩ =

∑
l

δkl x
µ
l |x

µ
l , y

ν
l , µ, ν = 1, ..., 4⟩,

ŷνk |x
µ
l , y

ν
l , µ, ν = 1, ..., 4⟩ =

∑
l

δkl y
ν
l |x

µ
l , y

ν
l , µ, ν = 1, ..., 4⟩. (8)

• There are a set of Hermitian operators {p̂µxk, p̂µyk, k = 1, ..., N, µ = 1, ..., 4} that
generates local diffeomorphism on TM along the integral curves of the local vector fields
{ ∂
∂xµ

k
, ∂
∂xν

k
, µ, ν = 1, 2, 3, 4, k = 1, ..., N}.

• The canonical commutation relations at fixed 2-time (t, τ) hold good,

[x̂µk , p̂νxl] = ı h̄ δµν δkl, [ŷµk , p̂νyl] = ı h̄ δµν δkl (9)

and any other canonical commutator is equal to zero.

The Hamiltonian (5) can be quantized to obtain the following Hermitian operator,

Ĥ(t, τ, û, p̂) =
1

2

8N∑
k=1

(
βk(t, τ, û) p̂k + p̂k β

k(t, τ, û)
)

(10)

When the quantum conditions (9) are applied to the Heisenberg’s equation for the Hamiltonian
(10), the equations (7) for the eigenvalues {xµk , y

µ
k k = 1, ..., N, µ = 1, ..., 4} in the eigenbasis
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(8) are obtained. Moreover, in order to be consistent between the Hilbert formalism and the
geometric formalism, we need to impose the constraints

ŷµk =
dx̂µk
dτ

, ∀ k = 1, ..., N, µ = 1, ..., 4. (11)

These relations are consistent, despite the fact that in quantum mechanics the coordinate

operators {X̂a, a = 2, 3, 4} and the velocity operators { ˙̂
Xa, a = 2, 3, 4} do not commute for each

quantum degree of freedom a. However, let us remark that the operators {(x̂ak, ŷak)}
N,4
k=1,a=2 do not

coincide with the quantum operators {Xa,
˙̂
Xa, a = 2, 3, 4}. The operators {X̂a,

˙̂
Xa, a = 2, 3, 4}

have as spectrum the possible outcomes of measurements of position and velocity for each

a. The operators {X̂a,
˙̂
Xa, a = 2, 3, 4} should emerge in DCRM together with the wave

function for the quantum state, that appears as phenomenological description of the ergodic
regime when one considers the projection (t, τ) 7→ τ . It is currently under investigation

to construct systematically the operators {X̂a,
˙̂
Xa a = 2, 3, 4} from the canonical operators

{xµ, yµ, p̂µxk, p̂µ,yk, µ = 1, 2, 3, 4, = 1, ..., N}.
As a consequence of this interpretation, the quantum states that are obtained from DCRM

are generically non-localized in both position and speed (or canonical momentum) and both

X̂a and
˙̂
Xa have generally non-zero dispersion. Therefore, the quantum states must hold a

representation of a non-commutative algebra,

[X̂µ
a , X̂

ν
b ] = Aµν δab, [

˙̂
Xµ

a ,
˙̂
Xν

b ] = Bµν δab, [X̂µ,
˙̂
Xν ] = Cµν δab, (12)

with µ, ν = 1, 2, 3, 4, a, b = 1, ..., N. The requirement of local invariance under the Lorentz
group of this algebra implies that the spacetime must be a quantum spacetime compatible with
an universal maximal acceleration and a universal maximal speed. A geometric realization of
quantum spacetime with maximal acceleration and maximal speed is under current investigation.

A fundamental problem with the quantum Hermitian Hamiltonian operator (10) is that, being

linear on the momentum operators, it is not direct that the quantum Hamiltonian Ĥ(t, τ, û, p̂) has
a stable vacuum eigenstate. This problem can be solved if there is a dynamical mechanism that
drastically reduces the dimensionality of the Hilbert space. In Hooft’s proposal a gravitational
type interaction originates the loss of information required for such reduction [4, 11]. However,
there is not logical need for gravity from a formal point of view.

In DCRM there is a natural mechanism to bound from below the spectra of the quantum
Hamiltonian Ĥ(t, τ, û, p̂) without introducing the gravitational interaction from the beginning
[8]. In particular, in the Ut dynamics the classical Hamiltonian (5) evolves towards an identically
zero classical Hamiltonian. Thus, we impose on the Ut operator the quantum constraint

lim
t→T

Ĥ(t, τ, û, p̂)|ψ⟩t = 0 (13)

This constraint shows the emergent character of the local diffeomorphism invariance for the Ut

and Uτ dynamics when acting on an generic quantum state |ψ⟩ ∈ H in the domain t→ T .

3. Concentration of measure
Under the hypothesis that in the domain t → T the Ut is a 1-Lipschitz operator, we can
find several interesting consequences. In particular, under this hypothesis, concentration of
measure as it appears in asymptotic theory of finite normed spaces [14], metric geometry [9]
and probability theory [18] can be applied in DCRM. Let us describe very briefly what is
concentration of measure. A measure metric space is a triplet (T , ηP , ε) where T is a topological
space, ηP is a measure on T and ε is a metric function on T . Then the general property of
concentration is usually quoted as follows [14],
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In a measure, metric space, real 1-Lipschitz functions of a large number of real variables are
almost constant almost everywhere.

The metric structure ϵ is necessary to define the 1-Lipschitz condition; the measure structure
ηP is necessary to have a notion of almost everywhere.

The intuitive reason behind this phenomenon can be explained as follows in the case that T
is a topological manifold (therefore, the notion of dimension of T is defined). When the function
f : T → R is under strict control, as it is the case of a 1-Lipschitz function, the possibility
that the difference between two values on the image is significant when they are found as a
translation in a given direction is sharply cut off with the distance in the images between them.
This is because when the number of variables is large, since similar differences will appear in
other directions, the 1-Lipschitz condition will be spoiled. They can be exceptions to these
bounds, but the probability that this happens is zero. The principle of concentration is a bast
generalization of the central limit theorem in probability theory.

To illustrate how the concentration of measure arises in DCRM we assume that the internal
dynamics operator Ut is 1-Lipschitz for values of the parameter t close enough to T . This
assumption is compatible with the fact that there is an equilibrium limit is 1-Lipschitz (by
assumption). Then let us consider a 1-Lipschitz function f ∈ FD(T

∗TM) of the form

f :
N∏
k=1

T ∗TMk
4 → R

with N >> 1. Then one has that almost everywhere

f(u1, ..., uN ) = f(v1, ..., vN ) + E(N),

where E(N) is a small error depending on the natural number N . This error E(N) quantified
in function of ϵ(u, v) in the form of concentration maps [14, 18]. These concentration maps are
usually exponential maps. The power of the concentration phenomenon will be exemplified in
the following two sections.

4. Example of concentration of measure and application to dynamical reduction of
quantum states
Let us consider an application of the concentration of measure in Rq with q >> 1. ηP is a
measure and f : Rq → R a real 1-Lipschitz function. Then there is concentration given by (see
for instance [18] , pg. 8)

ηP (|f −Mf | > ρ) ≤ 1

2
exp

(
− ρ2

2ρ2P (f)

)
, (14)

where we have adapted the example from [18] to a Gaussian distribution ηP with mean Mf and
standard deviation ρP (f). ρP (f) has the physical interpretation of being the minimal resolution
attainable when measuring the observable associated with the classical function f : Rq → R.

We apply this example of concentration to the function f ∈ FD(T
∗TM). For f there is a

maximal resolution ρp(f) in their possible measurement outcome values. In the 1-Lipschitz
dynamical regime of the evolution operator Ut, the function f must be constant almost
everywhere, since f is 1-Lipschitz in (u, p) and t. Moreover, for macroscopic observable effects
one expect a relation of the type

ρ2

ρ2P (f̃)
≃ N2, 1 << N. (15)
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Let us restrict our considerations to the case when the quantum system corresponds to a
fundamental particle which quantum fields appear in the Standard Model. The natural number
N provides a measure of the complexity of the fundamental system compared with the complexity
of the associated quantum system. The degree of complexity of a quantum state is of order
1, since there is one quantum particle involved compared with the degree of complexity of
a DCRM, which is of order N . This order of complexity 1 is of the same order than the
dimension of the model space-time manifold M4, the number of spin degrees of freedom, and
other quantum numbers associated with the quantum mechanical description of a fundamental
quantum particle. Let us consider the case TM ∼= R8N . If we make use of (15), the concentration
relation (14) applied to the function f in the 1-Lipschitz dominated regime of Ut becomes

ηP

(
|f −Mf | > ρP (f)

)
≤ 1

2
exp

(
− 32N2

)
. (16)

Note that Mf depends on the initial conditions (u1(0), ..., u8N (0), p1(0), ..., p8N (0)). Since by
assumption ρP (f) is small compared with |f − Mf | and N0 >> 1, there is concentration of
measure around the mean Mf . Thus, if a measurement of an observable associated with f is
performed, the resultMf will be obtained with high certainty. This corresponds with a reduction
of the quantum state. These reduction of the state not only happens when the system is being
measured, but it is an spontaneous process. Such spontaneous processes happen even if there is
not measurement. The driven force for this to happen is purely classical, since it appears in the
limit t→ T only (in the ergodic regime Ĥ ̸= 0 and therefore, it is not present). A measurement
involves an additional process which is not classical and mediated by effective quantum gauge
interactions between the system and a external quantum particle (for example, electromagnetic
interaction). Such quantum process is amplified by the detector device.

5. Concentration of measure and emergence of the weak equivalence principle in
DCRM
We denote by observable coordinate Xµ(Si(τ) associated to the system Si, i ≡ S, A,B the
coordinate of the system Si measured by a macroscopic observer. In the concentration(1-
Lipschitz dynamical domain), such observable are 1-Lipschitz. The observable coordinate does
not depend on t, since emerge in the effective description of DCRM in the projection (t, τ) → τ .
Therefore, they correspond to measurements of position observable performed by a macroscopic
observer.

The configurations of the subsystems A and B can be represented in some special local
coordinates on TM by the coordinate representation

A ≡ (u1(τ), ..., uNA
(τ), 0, ..., 0) and B ≡ (0, ..., 0, v1(τ), ..., vNB

(τ)),

with N = NA + NB, NA, NB >> 1 and u(τ) = u(t = T, τ). Locally, the full system S can be
represented as

S ≡ (u1(τ), ..., uNA
(τ), v1(τ), ..., vNB

(τ)).

By the concentration property (14), the evolution under the same initial conditions for the
observable coordinates Xµ(S(τ)), the configuration Xµ(A(τ)), the configuration Xµ(B(τ)) will
differ after the evolution along the time τ such that

ηP
(
|Xµ(Si(τ))−Mµ(τ)| > ρ

)
t→T

∼ C1(i) exp
(
− C2(i)

ρ2

2L2
p

)
.
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C2(i) is of order 32. For the Ut dynamics it can happens that there is an interchange of
fundamental degrees of freedom in the form of fundamental interactions with the environment.
This can affect the motion of the center of massMµ(Si(t, τ)) in a rather intricate way, depending
on the system Si(τ). However, if the system is in free fall in the sense of absence of interchange
of matter with the environment, the center of mass coordinates Mµ(Si(τ)) follow a well defined
ordinary differential equation,

d

dτ
Mµ(τ) = hµ(τ) (17)

where the function hµ is fixed by the equations of motion of the k-degrees of freedom by the
properties of the measure µk and it does not depend on the system. We can assume that
d
dτ µk(t, τ) = 0. Then the center of mass coordinates Mµ(τ) will not depend on the system S, A
or B. In this case, let us consider geometric configurations for the systems Si, i = 1, 2, 3 such
that the mean value functions {Mµ(τ) : R → R, τ 7→ Mµ(τ)}4µ=1 do not depend on the system

A, B or S at any time τ . Since for macroscopic or quantum systems the quotient ρ2

2L2
p
≥ 32,

there is concentration of the functions {Xµ(τ)}4µ=1 around the same mean {Mµ(τ)}4µ=1.
In the limit t → T the Hamiltonian is constrained by the condition (13). Such condition

suggests that in the dynamical evolution described by the operator Uτ , the gravitational
interaction must be included, since the dynamics is invariant under diffeomorphisms. Therefore,
in the limit t→ T we can decompose

Ĥt = Ĥmatter + Ĥgravity, (18)

where Ĥgravity is the Hamiltonian responsible for the Ut dynamics and must be introduced in
order that the constraint (13) holds. In this interpretation, gravity is associated with the purely
internal dynamics Ut in the t → T limit. Moreover, if we assume the value N , we can make
a falsifiable prediction: in DCRM framework, the weak equivalence principle applied to the
observable coordinates {Xµ}4µ=1 is exact up to a precision O(exp(−32N2) or higher. Thus, for
N = 1 the error should be of order exp(−32), while for N = 2 it should be of order exp(−128).

6. Gravity as emergent interaction
If we collect all the characteristics of the 1-Lipschitz interaction Ut in the regime t→ T we have
that,

(i) It is described by a theory invariant under infinitesimal diffeomorphism transformations,
since the constraint (13) holds good,

(ii) The weak equivalence principle for the center of mass functions Mµ(S(τ)) holds good,
(iii) There is a local maximal speed for the fundamental degrees of freedom of a DCRM and

local Lorentz invariance holds,

(iv) It is a classical, macroscopic and universal interaction,

(v) It must be compatible with the existence of a maximal acceleration.

Then the identification of a part of the 1-Lipschitz interaction Ut in the regime t → T and
the gravitational contribution to the external interaction itself Uτ is a natural step, since the
constraint (13) must hold. Also, let us remark that the acceleration is universally bounded,
in contrast with general relativity. Maximal acceleration appears because the local character
of interactions, the existence of an universal minimal universal length, and the existence of an
universal maximal speed for any dynamical degree of freedom. All these properties are present
in DCRM.
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The suggestion that the gravitational interaction and objective reduction of the wave packet
are related is not new (see for instance [3, 5, 15, 17]). However, we have argued that in the
DRCM framework classical gravity and the reduction of the wave packet are two aspects of the
same concentration of measure phenomena. Moreover, our argument supports the classical and
emergent nature of the gravitational interaction. From what we have said, the emergent nature is
clear. The classical nature is irremediably associated to the emergence, since it is an interaction
that appears significatively only in the regime where physical quantum and macroscopic systems
are localized in position and speed variables.
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[1] Acosta D, Fernández de Córdoba P, Isidro J M and Santander J L G 2013 Int. J. Geom. Methods Mod. Phys.

10 1350007
[2] Adler S L 2001 Chance in Physics Lect. Notes Phys. 574 ed Bricmont Jet al (Berlin: Springer) pp 103-114

Adler S L 2004 Quantum Theory as an Emergent Phenomenon: The Statistical Mechanics of Matrix Models
as the Precursor of Quantum Field Theory (New York: Cambridge University Press)

[3] Adler S L Gravitation and the noise needed in objective reduction models Preprint arXiv:1401.0353 [gr-qc]
[4] Blasone M, Jizba P and Vitiello G 2004 Decoherence and Entropy in Complex Systems Lect. Notes Phys.

633 Ed. Elze H T (Berlin: Springer) pp 151-163
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