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Dipartimento di Fisica, Università di Firenze, I50019 Sesto Fiorentino, Firenze, Italy
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Abstract. We construct a rigged Hilbert space for the square integrable functions on the line
L2(R) adding to the generators of the Weyl-Heisenberg algebra a new discrete operator, related
to the degree of the Hermite polynomials. All together, continuous and discrete operators,
constitute the generators of the projective algebra io(2). L2(R) and the vector space of the line R
are shown to be isomorphic representations of such an algebra and, as both these representations
are irreducible, all operators defined on the rigged Hilbert spaces L2(R) or R are shown to belong
to the universal enveloping algebra of io(2). The procedure can be extended to orthogonal and
pseudo-orthogonal spaces of arbitrary dimension by tensorialization.

Circumventing all formal problems the paper proposes a kind of toy model, well defined
from a mathematical point of view, of rigged Hilbert spaces where, in contrast with the Hilbert
spaces, operators with different cardinality are allowed.

1. introduction
Physical quantities we take into account in quantum mechanics are both discrete and continuous.

In the free particle case, position and energy have both the cardinality ℵ1 but, when we
consider localized states, the energy has a discrete spectrum i.e. the cardinality ℵ0, while
position remains continuous.

In a formal description, this causes problems as, in a Hilbert space (HS), dimensions are well
defined so that we cannot in the same HS have operators with a spectrum of different cardinality.

For this reason the standard approach depicts localized systems in a countable HS where
energy is diagonalizable while position, that is continuous, is described by means of elaborated
limits on functions with compact support. We are indeed compelled to a complicated and
formally unsatisfactory description of position that cannot be described by an operator.

In reality at the beginning of quantum mechanics this problem was not there, as a physical
state was not described by a vector in a HS but as a ray in such a Hilbert space i.e. it was
associated to a whole family of vectors defined up to an arbitrary complex number. The one-to-
one correspondence was thus between a physical state and an element of a rigged Hilbert space
(RHS), an intricate concept involving a Gelfand triple φ ⊆ H ⊆ φ′ , whereH is a Hilbert space, φ
(dense subset of H) is the “ket” space and φ′ (dual of φ) is the “bra” space [1]. However quickly
RHS has been considered an unnecessary complication as the results can be found, at least at
the formal level usually accepted by physicists, in the Hilbert space obtained representing, by
means of the axiom of choice, each entire ray with a vector of norm one and phase zero. In
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concrete the expectation value of the operator Ω in the state |ψ〉 was defined as [2]:

〈Ω 〉 =
〈ψ|Ω|ψ〉
〈ψ|ψ 〉

;

where the norm of the vector |ψ〉 is arbitrary and the operator Ω can relate vectors not
necessarily of the same norm. In the evolution of the theory this freedom has been disregarded
and a one-to-one relation was established between physical states and normalized vectors in a
Hilbert space, preserving only the phase freedom related to the gauge theories.

Furthermore also group theory suggests that the “right” space could be the RHS and not the
simpler HS. For instance in [3] continuous bases are described jointed to the discrete one into
the same representation of SU(1, 1) and the HS defined by the discrete basis is implemented
introducing the space of differentiable vectors and its dual φ′ that contains the “generalized
eigenvectors” of the non compact generators [4].

Moreover by means of rigged Hilbert spaces the Dirac formalism can be reproduced, for the
harmonic oscillator, as shown by Böhm in his book [1].

We do not attempt to discuss here the formal properties of RHS , as did Böhm [1], but
we exhibit a one dimensional example where all formal problems are circumvented using
special functions. Anyway this example is in reality quite more then an example as it can
be easily extended, by tensorial construction, to orthogonal and pseudo-orthogonal spaces of
any dimension.

In conclusion, let us stress that the difference between RHS formalism and the usual HS one
appears to be minor from the physicists point of view but is essential from the mathematical
point of view and leads to a tremendous mathematical simplification: in fact it justifies the
mathematically undefined operations that the physicists have been accustomed to in their
calculations.

Our fundamental statement is thus that the restriction from RHS to HS is unjustified in the
sense that we lose more of what we gain in the reduction, because in RHS all is mathematically
well defined and all observables can be correctly described. In addition, as shown in the following,
RHS allow to include inside Lie algebras and Lie universal enveloping algebras operators with
spectrum of different cardinality.

The fundamental ingredients of the paper are well known:
1) Hermite functions with their discrete label and continuous variable that are described by

observables of different cardinality.
2) Lie algebras, groups and representations of special functions.
A more detailed discussion of the algebraic properties of special functions and of their role

as transition matrices between discrete and continuous bases can be found in [5], while in [6]
the technical aspects of the introduction of RHS by means of special functions are discussed,
showing the solidity of the approach.

Here, on the contrary, our attention is addressed to stress that the RHS is an enough simple
and mathematically satisfactory formalism.

2. Hermite functions {ψn(x)} as localized wave functions on the line
As a first step, let us introduce the Hermite functions [7]

ψn(x) :=
e−x

2/2√
2nn!
√
π
Hn(x) .

As [8] ∫ ∞
−∞

ψn(x) ψn′(x) dx = δn,n′ ,

∞∑
n=0

ψn(x) ψn(x′) = δ(x− x′) ,
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{ψn(x)} is a basis of the space of real/complex square integrable functions on the
line L2((−∞,∞)) ≡ L2(R) .

Using the freedom of fixing the origin as well as the scale of position and momentum, Hermite
functions can be generalized to ψ[n, x0, s, x] so that

ψ[n, x0, s, x] :=
e−

(x−x0)
2

2s2√
2nn!s

√
π
Hn [(x− x0)/s]

ψ[n, p0, s, p] :=
e−

(p−p0)
2s2

2
√
s√

2nn!
√
π

Hn [(p− p0)s]

∫ ∞
−∞

ψ[n, x0, s, x] ψ[n′, x0, s, x] dx = δnn′

∞∑
n=0

ψ[n, x0, s, x] ψ[n, x′0, , s, x
′] = s δ[(x− x0)− (x′ − x′0)] .

Among the∞-many bases of square integrable functions on the line L2(R), Hermite functions
are particularly suitable to connect classical and quantum physics. Indeed they describe wave
packets in the position and, as ψn(x) is an eigenvector of the Fourier transform, also in the
momentum; so that they correspond to our intuitive vision of quantum mechanics and, in the
appropriate limit, allow to reconstruct the classical pattern.

Note also that they allow to describe systems with the appropriate behavior in function of
energy. The minimal indetermination corresponds to the state with n = 0 , while as n increases,
and with n the energy of the state, also the indetermination increases.

Indeed as ∫ ∞
−∞

(x− x0)2 ψ[n, x0, s, x]2 dx = (n+ 1/2) s2 ,

∫ ∞
−∞

ψ[n, x0, s, x] ∂2x ψ[n, x0, s, x] dx = −(n+ 1/2)/s2 ,

we have
∆X =

√
n+ 1/2 s , ∆P =

√
n+ 1/2/s

and thus
∆X ∆P = n+ 1/2 .

3. Algebra of Hermite functions
The basic idea is to introduce the operator N that read the label n of the {ψn(x)} [5]. In
addition to X and P ≡ iDx we put thus in the space L2(R) the operators N and I such that

Xψn(x) := xψn(x) , Dxψn(x) := ψ′n(x) , Nψn(x) := nψn(x) , Iψn(x) := ψn(x). (1)

This allows to rewrite the recurrence relations of Hermite polynomials

H ′n(x)− 2xHn(x) = Hn+1(x), H ′n(x) = 2nHn−1(x)
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as
a† ψn(x) =

√
n+ 1 ψn+1(x) , a ψn(x) =

√
n ψn−1(x), (2)

where a† and a are defined in terms of the hermitian operators X and P

a† :=
1√
2

(X − iP ) , a :=
1√
2

(X + iP ) .

The algebra contains the rising and lowering operators on the Hemite functions [5, 9]

[N, a†] = a†, [N, a] = −a , [a, a†] = I , [I, •] = 0

and is isomorphic to the projective algebra io(2) [10, 11]:

[N,X] = −iP , [N,P ] = iX , [X,P ] = i I , [I, •] = 0 . (3)

As discussed in [12], eqs.(1,2) do not define the algebra (3) but only one of its representations.
The Casimir operator

C ≡ (X2 −D2
x)/2− (N + 1/2) I = {a†, a}/2− (N + 1/2) I (4)

has indeed zero value on the square integrable functions on the line L2(R), where we can assume
I = 1 and write

C ψn(x) =
[
{a†, a}/2−N − 1/2

]
ψn(x) = 0

or, alternatively,
C ψn(x) =

[
(X2 −D2

x)/2−N − 1/2
]
ψn(x) = 0

that, by inspection, are equivalent to the Hermite differential equation:

H ′′n(x)− 2xH ′n(x) + 2nHn(x) = 0 .

The eq. C = 0 can be thus also considered as the operatorial identity that defines L2(R):

N ≡
(
X2 −D2

x − 1
)
/2 ≡ {a, a†}/2− 1/2 . (5)

Let us stress that, usually, the operator N is included inside the UEA of the Weyl-Heisenberg
algebra as N := a†a [13], while here it has been introduced starting from the label of Hermite
polynomials and it has the role of an independent generator of the algebra io(2). Only when
the representation C = 0 is considered (the one of the Hermite functions) the results of the two
approachs coincide.

4. The line R and its bases
To construct the bases of R, we move now to group theory [14].

We start from the unitary irreducible representations of the translation group T 1

P |p〉 = p |p〉 , Up(x) |p〉 = e−ipx |p〉 .

The regular representation {|p〉} (−∞ < p < ∞) is such that

〈 p | p′ 〉 =
√

2π δ(p− p′) , 1√
2π

∫ +∞

−∞
|p〉 dp 〈p| = I
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Now we can move, by means of the Fourier transform, to the continuous group element label
x from the irreducible representation label p (also continuous) resorting, in this way, the strict
connection of group theory with harmonic analysis.

The conjugate basis {|x〉}, defined by the operator X, is obtained, indeed, as

|x〉 :=

[
1√
2π

∫ +∞

−∞
dp e−ipx

]
|p〉 , 〈x |x′ 〉 =

√
2π δ(x− x′) , 1√

2π

∫ +∞

−∞
|x〉 dx 〈x| = I

and the operators X and P close, together with I, the Weyl-Heisenberg algebra.
Consistently with the previous section, we introduce now the set of vectors {|n〉}

|n〉 := (2π)−1/4
∫ ∞
−∞

dx ψn(x) |x〉 n ∈ N , (6)

that, by inspection, is an orthonormal and complete set in R

〈n |n′ 〉 = δnn′ ,
∞∑
n=0

|n〉 〈n| = I .

{|n〉} is thus a discrete basis in the real line R , i.e. R ≡ {|p〉} ≡ {|x〉} ≡ {|n〉} and {ψn(x)} are
the transition matrices between {|n〉} and {|x〉} :

〈n|x〉 = (2π)1/4 ψn(x) .

Relations among the three bases are easily established, as {ψn(x)} are eigenvectors of Fourier
transform, [

1√
2π

∫ ∞
−∞

dx e ipx
]
ψn(x) = in ψn(p) ,

|x 〉 = (2π)1/4
∞∑
n=0

ψn(x) |n〉 , |p 〉 =

[
1√
2π

∫ ∞
−∞

dx e ipx
]
|x 〉 ,

|n〉 = in (2π)−1/4
∫ ∞
−∞

dp ψn(p) |p〉 , | p 〉 = (2π)1/4
∞∑
n=0

in ψn(p) |n〉 .

For an arbitrary vector |f〉 ∈ R we thus have

|f〉 =
1√
2π

∫ +∞

−∞
dx f(x) |x〉 =

1√
2π

∫ +∞

−∞
dp f(p) |p〉 =

∞∑
n=0

fn |n〉 ,

f(x) := 〈x|f〉 = (2π)1/4
∞∑
n=0

ψn(x) fn , f(p) := 〈p|f〉 = (2π)1/4
∞∑
n=0

(−i)n ψn(p) fn ,

fn := 〈n|f〉 = (2π)−1/4
∫ +∞

−∞
dx ψn(x) f(x) = in(2π)−1/4

∫ +∞

−∞
dp ψn(p) f(p)

and the wave functions f(x) , f(p) and the sequence {fn} describe |f〉 in the three bases.
All seems trivial, but {|n〉} has the cardinality of the natural numbers ℵ0 and, as all bases

in a Hilbert space have the same cardinality, the structure we have constructed (the quantum
space on the line R) is not a Hilbert space but a rigged Hilbert space, where

|x〉 ∈ φ′ , |p〉 ∈ φ′ , |n〉 ∈ φ .
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Because of Eq.(6), R and L2(R)) are isomorphic and we can write the algebra io(2) on {|n〉}
that is, as on {ψn(x)}, a representation of io(2) with zero value of the Casimir operator (4).

Again on the representations we can assume I = 1 and write

X|n〉 = (a† + a)|n〉 =
√
n+ 1|n+ 1〉+

√
n|n− 1〉 ,

P |n〉 = i(a† − a)|n〉 = i
√
n+ 1|n+ 1〉 − i

√
n|n− 1〉,

N |n〉 = n|n〉 , I|n〉 = |n〉 , a†|n〉 =
√
n+ 1|n+ 1〉 , a|n〉 =

√
n|n− 1〉 ,

C |n〉 =
[
(X2 −D2

x)/2− (N + 1/2)
]
|n〉 =

[
{a, a†}/2−N − 1/2

]
|n〉 = 0 ,

and the identity (5) defines not only the vector space L2(R) but also the vector space R.
Note that, if we restrict ourselves to a Hilbert space, half of the above presented relations are

meaningless.

5. Universal enveloping algebra and operators in a RHS
Let us discuss now the implications of the algebraic discussion of previous section on the
operators defined on L2(R) and R.

In a RHS we have no problems to consider X and P as generators of a Lie algebra together
with the number operator N [1, 5]. This allows us to include differential operators inside the
algebraic structure and to extend the set of operators defined in the universal enveloping algebra.

Both on {ψn(x)} and on {|n〉}, the representations are irreducible, so that -on both spaces
L2(R) and R- all operators of the UEA[io(2)] are defined and an isomorphism exists between
the UEA[io(2)] and the space of the operators {O[L2(R)]} and {O[R]} :

{O[L2(R)]} ≡ UEA[io(2)] ≡ {O[R]} ,

i.e. each operator O can be written

O =
∑

cαβ γ X
αDx

β Nγ =
∑

dαβ γ a
†αNβ aγ .

¿From the analytical point of view, an ordered monomial XαDx
β Nγ ∈ UEA[io(2)] is an

order β differential operator but, because of the operatorial identity (5), we have

D2
x ≡ X2 − 2N − 1,

and any operator in {O[L2(R)]} and in {O(R)} can be written in the form

O = f0(X) g0(N) + f1(X) Dx g1(N)

as all higher power of Dx can be removed and substituted by functions of X and N . In
particular, on the vector ψn(x) we have thus

O ψn(x) = f0(x) g0(n)ψn(x) + f1(x) g1(n) ψ′n(x) .
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6. Conclusions
Rigged Hilbert spaces are shown to be more effective than Hilbert spaces in quantum physics as
operators of different cardinality can be considered together.

In rigged Hilbert spaces discrete and continuous bases exist togheter. In particular discrete
and continuous bases coexist such that special functions are transformation matrices between
them.

In RHS -consistently with group theory- operators of different cardinality can be together
generators of a Lie algebra or elements of an universal enveloping Lie algebra.

The fundamental point is that, while in a HS hermitian operators with spectrum of different
cardinality lead to undefined operations (that, anyway, physicists are used to perform without
too much hesitation), in a rigged Hilbert space the theory is mathematically consistent.

We have discussed here the complex rigged Hilbert space of quantum mechanics. The
discussion of the real Hilbert space used in signal processing follows exactly the same lines.
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