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Abstract. We calculate the geometric phase of a bipartite two-level system coupled to an
external environment. We compute the correction to the unitary geometric phase through
a kinematic approach. To this end, we analyse the reduced density matrix of the bipartite
system after tracing over the environmental degrees of freedom, for arbitrary initial states of
the composite system. In all cases considered, the correction to the unitary phase has a similar
structure as a function of the degree of the entanglement of the initial state. In the case of a
maximally entangled state (MES), the survival phase is only the topological phase, and there
is no correction induced by the environments. Further, we compute the quantum discord and
concurrence of the bipartite state and analyse possible relations among these quantities and the
geometric phase acquired during the non-unitary system’s evolution.

1. Introduction
For a bipartite quantum system, it is important to know whether the system is entangled,
separable, classically correlated or quantum correlated. It is well known that entanglement makes
possible tasks in quantum information that could not be possible for its classical counterpart. As
a valuable resource in quantum information processing, entanglement attracts much attention
from researchers either in theory or in experiment and much progress concerning entanglement
has been achieved [1]. Due to its unique property in the sense that it has no classical counterpart,
entanglement has been applied to the implementation of quantum teleportation [2] and quantum
cryptography [3].

A bipartite quantum state contains both classical C(ρAB) and quantum correlations Q(ρAB).
These correlations are justified jointly by their “quantum mutual information” I(ρAB), since it is
written as the sum of both I(ρAB) = C(ρAB)+Q(ρAB). This quantum part is known as quantum
discord [4]. Even for the simplest case of two entangled qubits, the relation between quantum
discord, entanglement and classical correlation is not yet clear. For pure states quantum
correlation is exactly equal to entanglement, whereas classical correlation attains its maximal
value 1. However, for a general two-qubit mixed state, the situation is more complicated.
Qubit-qubit entanglement has been characterised completely, while quantum discord has only
been quantified for particular cases [5].

From another point of view, a system can storage the information of its motion when it
undergoes a cyclic evolution, in the form of a geometric phase (GP), which was first put forward
by Pancharatnam in optics [6] and later studied explicitly by Berry in a general quantal system
[7]. Since then, great progress has been achieved in this field. The geometric phase has been
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extended to the case of non-adiabatic evolutions [8]. As an important evolvement, the application
of the geometric phase has been proposed in many fields, such as the geometric quantum
computation. Due to its global properties, the geometric phase is propitious to construct fault
tolerant quantum gates. In this line of work, many physical systems have been investigated
to realise geometric quantum computation, such as NMR (Nuclear Magnetic Resonance) [9],
Josephson junction [10], Ion trap [11] and semiconductor quantum dots [12]. The quantum
computation scheme for the geometric phase has been proposed based on the Abelian or non-
Abelian geometric phase, in which geometric phase has been shown to be intrinsic against
faults in the presence of some kind of external noise due to the geometric nature of Berry
phase. It was therefore seen that the interactions play an important role for the realisation
of some specific operations. Consequently, study of the geometric phase was soon extended
to open quantum systems. Following this idea, many authors have analysed the correction to
the geometric phase under the influence of an external environment using different approaches
[13, 14, 15, 16, 17, 18, 19, 20].

In this context, we shall study the geometric phase acquired by a bipartite system in the
presence of an external environment. We shall consider both the presence of a bosonic and spin
environment. We shall also study the relation between classical and quantum correlations when
the geometric phase is affected by the environment.

2. Model
We shall consider a bipartite system, that is to say, two interacting two-level systems, both
coupled to an external reservoir. In terms of the Hamiltonians, the model can be mathematically
described by the Hamiltonian of the free bipartite system HS is

HS =
h̄Ω1

2
σ1
z +

h̄Ω2

2
σ2
z + γ σ1

z ⊗ σ2
z , (1)

and the Hamiltonian of interaction between the bipartite and the external bath HI

HI = σ1
z ⊗

N∑
n=1

λnqn + σ2
z ⊗

N∑
n=1

gnqn (2)

where the constants λn and gn couple the system to each oscillator in the environment, and γ is
the coupling strength between both spin-1/2 particles. Here we have assumed that the coupling
constant of the two-level systems with the environment is different being λn for the spin 1 and
gn for spin 2. The external bath HB can be either considered as set of delocalised bosonic
field modes (HB =

∑N
n=1 h̄ωna

†
nan ) or spin environments which are typically the appropriate

model in the low temperature regime. In the case of having a spin environment, the interaction
Hamiltonian is given by

HI = σ1
z ⊗

N∑
i=1

εiσzi + σ2
z ⊗

N∑
i=1

λiσzi. (3)

In the most general case, for an initial state of the system |Φ(0)〉 = α|00〉+β|01〉+ζ|10〉+δ|11〉,
the reduced density matrix for this model can be written as,

ρr(t) =


|α|2 αβ∗e−i(2γ+Ω2)tΓ12 αζ∗e−i(2γ+Ω1)tΓ13 αδ∗e−i(Ω1+Ω2)tΓ14

βα∗ei(2γ+Ω2)tΓ∗21 |β|2 βζ∗e−i(Ω1−Ω2)tΓ23 βδ∗e−i(Ω1−2γ)tΓ24

ζα∗ei(2γ+Ω1)tΓ∗31 ζβ∗ei(Ω1−Ω2)tΓ∗32 |ζ|2 ζδ∗e−i(Ω2−2γ)tΓ34

δα∗ei(Ω1+Ω2)tΓ∗41 δβ∗ei(Ω1−2γ)tΓ∗42 δζ∗ei(Ω2−2γ)tΓ∗43 |δ|2

 ,
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The effect of the environment is encoded in the Γij(t) functions. They are deduced for
bosonic and fermionic environments in [21]. In the case of having an environment composed by
an infinite set of harmonic oscillators at temperature T = 0, the coefficients Γij are given by

Γ(t) = e−2γ0 log(1+Λ2t2), (4)

where it is supposed that all the coupling strengths are the same, therefore we have omitted
subindex in the expression for the decoherence factors (detailed calculations can be found in
Ref. [21]). In this case, γ0 is a dissipation constant (related to the coupling constant between
the system and the environment) and Λ is the frequency cutoff of the bath. In the case of a
spin-environment, the decoherence factors can be written as

Γ(t) =
N∏
i=1

{
1−

(
2(εi ± λi)2

h2
i + (εi ± λi)2

)
sin2(t

√
h2
i + (εi ± λi)2)

}
, (5)

where signs (±) in the parenthesis, are related with the type of initial state selected. These
cases will be defined in the next Section.

3. Geometric phase
In order to compute the geometric phase for the open system, we shall use a kinematic approach
proposed by [13], defined as

φG = arg

{∑
k

√
εk(0)εk(τ)〈Ψk(0)|Ψk(τ)〉 × e−

∫ τ
0
dt〈Ψk| ∂∂t |Ψk〉

}
, (6)

where εk(t) are the eigenvalues and |Ψk〉 the eigenstates of the reduced density matrix ρr

(obtained after tracing over the reservoir degrees of freedom). In the last definition, τ denotes a
time after the total system completes a cyclic evolution when it is isolated from the environment.
Taking into account the effect of the environment, the system no longer undergoes a cyclic
evolution. However, we shall consider a quasi cyclic path P : t ε [0, τ ], with τ = 2π/Ω (Ω is
the system’s characteristic frequency). When the system is open, the original GP, i.e. the one
that would have been obtained if the system had been closed φUG, is modified. This means, in
a general case, the phase is φG = φUG + δφG, where δφG depends on the kind of environment
coupled to the main system [14, 15, 16].

In this manuscript we shall consider different initial states to compute the correction to the
unitary geometric phase when these states evolve in a no-unitary way.

• Case 1. We consider the initial state ρ = a|φ+ >< φ+| + (1 − a)|1, 1 >< 1, 1| (0<a ≤ 1),
where |φ+ >= (|0, 0 > +|1, 1 >)/

√
2 is a maximally entangled state. In this case, we can

compute the geometric phase by extracting the eigenvalues from the reduced density ma-
trix. In order to know how the geometric phase of this family of states is affected by the
presence of an environment, we shall present the rate between the open geometric phase
and the unitary geometric phase in a density plot in Fig.1, where the vertical axis corre-
sponds to the coupling constant γ0 for the oscillators bath, and ε (or λ) in the case of spin
environment. The horizontal is for the parameter a which set the degree of entanglement.
Therein we consider both cases: (a) a bosonic environment and (b) a fermonic environment.
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Fig1.(a) φ/φu for the bosonic environment.
There is no correction to the GP for the

MES.
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Fig1.(b) φ/φu in the case of a spins
environment.There is no correction to the

GP for the MES.

In this case, the parameters used are: Λ = 100 for a set of harmonic oscillators at zero
temperature while we used and h = 1 for an environment composed of N = 100 spins. In
all cases, we considered that the interaction between each spin and the environment was
equivalent. In both plots of Fig.1 we can see that the correction to the geometric phase
φ/φu ≈ 1 (which means δφG ≈ 0) when the parameter a→ 1, which corresponds to a state
approaching a maximally entangled state (MES). In this case, the survival phase is only the
topological phase, and there is no correction induced by the environments. These results
has also been showed in [21] with another set of states, which reveals that the robustness
of the topological phase under the influence of decoherence is a more general result, not
restricted to some states or kind of environmental influence. The topological phase, which
is indeed a consequence of the geometry of the entangled two-level system, has been studied
for MES and it is at the origin of singularities appearing in the phase of MES during a
cyclic evolution. In Ref. [22], it is studied the phase dynamics of entangled qubits under
unitary cyclic evolutions. Therein, it is shown that, after a cyclic evolution, the combina-
tion of the different phases always leads to a global phase of an entire multiple of π. This
result, already known and verified experimentally for a single qubit is recovered here for an
entangled qubit with maximal degree of entanglement in the presence of an environment.
The total phase gained by a state in a closed evolution is a combination of not only the dy-
namical and geometrical phase but also the topological phase. Similarly to one qubit states,
MES also gain a total phase of π (or nπ) under a cyclic evolution. However, this phase
is of topological origin. In the case of a MES there is no correction to the unitary phase.
For other states, the correction to the phase increases with the smaller values of parameter a.

• Case 2. We take the class of states defined as ρ = a|ψ+ >< ψ+| + (1 − a)|1, 1 >< 1, 1|
(0<a ≤ 1), where |ψ+ >= (|0, 1 > +|1, 0 >)/

√
2 is a maximally entangled state.

In Fig.2. we present the results for this case, where decoherence does not affect the system.
Therefore, the geometric phase is the unitary geometric phase for all set of states given
for any value of a. These states are fully robust under the influence of external conditions
such the ones presented in these examples. In all cases, we considered that the interaction
between each spin and the environment was equivalent. We have considered the same
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Fig2. φ/φu for this type of state under either a bosonic or fermonic environment. There is no
correcction to the GP for these states.

parameters as in Case 1.

4. Correlations
In this section we can analyse the quantum and classical correlations that exist for both family of
states considered in Case 1 and Case 2 above, for an isolated system (the effect of the environment
on these quantities will be presented elsewhere). A measure of the classical relations can be
written as C(ρ) := supBkI(ρ|Bk) where Bk means all the possible von Neumann measurements of
the qubit B. As the quantum discord is defined as Q(ρ) := I(ρ)−C(ρ), the obstacle to computing
this quantity lies in this complicated maximisation procedure. For a general two-qubit X state,
the quantification of quantum discord is still missing with some particular results available.
Herein, we shall follow the method developed in [5] to evaluate the classical correlation and
quantum discord of the two-qubit X states considered above. Classical and quantum correlations
of the bipartite quantum system are quantified jointly by the mutual information. If ρAB is the
density matrix (operator) of the bipartite system AB, ρA (ρB) is the density matrix associated
to the part A (B). Thus, one can define the quantum mutual information as

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (7)

where S(ρA) = −tr(ρ log2 ρ) is the von Neumann entropy.
In Fig3. we present the classical correlation (C dotted black line), the quantum discord (Q

dashed red line), and the concurrence (C in blue solid line), for each family of states considered
above. In these examples, the quantum correlation is measured by the concurrence (see for
instance Ref. [21]).
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Fig.3-a) Classical correlations are bigger
when we consider initial state is

ρ = a|φ+ >< φ+|+ (1− a)|1, 1 >< 1, 1|.
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Fig.3-b) Quantum correlations are an upper
bound when the initial state is

ρ = a|ψ+ >< ψ+|+ (1− a)|1, 1 >< 1, 1|.

From the plots, we can see that in Case 1 there is a given hierarchy in the correlations.
Classical correlations are always much bigger than the quantum discord, which is also smaller
than the concurrence of these states. In the case of a MES, all measure of correlations coincide
in the same value. On the other side, it is possible to note that the quantum correlation
(concurrence in our example) results in an upper bound for all type of correlations, classical or
even the quantum discord, in the Case 2 example. In this case we have shown that there is
not decoherence effects coincidentally with the fact that the quantum correlation remains bigger
than the others.

5. Conclusion
As can be noticed, the environment has a stronger influence on the geometric phase when the
state is less correlated, say small values of a. In those cases, the family of states proposed in
Case 1, have a considerable correction to the unitary geometric phase. However, this correction
decreases as the states become more correlated. For the family states of Case 2, we see that
decoherence does not affect the geometric phase at all. In that case, we can see that the
quantum correlations are very important being always bigger than classical correlations. Maybe
a further insight into the quantum correlations of the quantum states can set light on the way
the geometric phase is corrected for a bipartite quantum state under no-unitary evolution.
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