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Abstract. A new model to determine the spectral velocity tensor in a stably stratified flow is
proposed. This model is complementary to the Mann model as it solves the stratified inviscid
Rapid Distortion Theory equations analytically, allowing for the determination of the single
and two-point velocity spectra as well as the temperature-velocity cross-spectra. The model
has been here calibrated and validated against field measurements conducted over a forested
area with measurements up to 140 m, therefore covering a region of interest for wind-energy
applications.

1. Introduction
The knowledge of the instantaneous velocity field characteristics of the atmospheric boundary
layer has crucial importance for an efficient wind-energy utilisation. However, the flow over the
rotor is highly turbulent and depends on a large number of parameters, like the boundary-layer
height, the geostrophic-wind variation and the surface inhomogeneities, to mention some. Wind
turbines must be designed to operate in and withstand such a turbulent environment. The
current physical understanding of turbulent motions comes from experiments (in real fields or
wind tunnels) and numerical simulations. In the latter case the high Reynolds number of the flow
becomes challenging because of the increasing scale separation between large and small eddies
both inside the domain and at the upstream domain boundaries. In order to obtain a realistic
turbulent velocity field, we must force a realistic turbulent field at the inlet of the computational
domain with prescribed characteristics or, alternatively, use a precursor simulation that serves
as input for the main simulation. The latter approach provides a realistic field but it has the cost
of additional computational power that is needed to provide the input for the main simulation.
The former method, on the other hand, is quite efficient but necessitates of some information
about the boundary-layer velocity field and its temporal characteristics. The model developed
by Mann [1], for instance, provides a description of the spectral velocity tensor (Φij , where i and
j correspond to the fluctuating velocity components u′, v′ and w′, indicating the streamwise,
lateral and vertical velocity components, respectively) that can be used to determine the single-
and two-point spectra of velocity time series inside and at the boundaries of the numerical
domain. This approach provides some information about the frequency distribution of the
energy so that a synthetic velocity field can be created that has the same one- and two-point
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statistics of the observed one. Since 1994, the model has become the standard tool to synthesise
turbulence time series at the inlet of many numerical simulations aimed at the characterisation
of unsteady loads and aeroelastic effects.

However, the Mann model provides results in absence of density stratification and empirical
approaches must be used to extend its application to non-neutral conditions (see for instance
[2]). The absence of a density equation in the Mann model limits its use as an in-flow tool
since, in addition to the initial velocity spectrum, models with non-neutral stratification need a
description of the initial temperature spectrum.

The Mann model is based on Rapid Distortion Theory (RDT) where the turbulence is
driven by the mean-flow distortion rather than by the non-linear distortions by turbulence
itself. As the theory is time-dependent, a characteristic time scale is introduced to stop the
structures evolution at a time related to their expected lifetime. In order to extend the model
to stratified conditions, a solution of the inviscid stratified RDT equations with homogeneous
shear is proposed, extending the solution of Hanazaki and Hunt [3] to the two horizontal velocity
components. The analytical solution allows for the determination of the spectra at any given
time, starting from a prescribed initial condition. Following the same approach adopted by
Mann [1], a model for the spectral velocity tensor in the atmospheric surface layer is obtained
where the spectral tensor, assumed to be isotropic at the initial time, evolves until the break-up
time, where the spectral tensor is supposed to achieve its equilibrium state observed in surface-
layer turbulence. A similar approach was developed by Chougule [4] by numerically integrating
the stratified RDT equations.

The present paper aims at assessing whether or not the new extended model (discussed in
section 2) can be used to simulate realistic atmospheric turbulence (as the Mann model does)
with the additional information that regards the heat fluxes and, in general, the temperature-
velocity correlations for different stability classes. Here only stably stratified conditions will be
discussed, although the model can be extended to unstable stratification as well. Data from a
measurement campaign over a forested site (section 3) will be used to calibrate and validate the
model (section 4). Section 5 will conclude the paper with some final remarks.

2. Mathematical model
Let us consider a homogeneously stratified flow (with constant dρ0/dz) with a uniform mean
velocity shear in the z-direction. By normalising physical variables with the characteristic length
and velocity scale L and Us (for the moment left unspecified), the dimensionless inviscid RDT
governing equations can be written in Fourier space (where the ·̂ indicates the Fourier transform
operator) as

dû

dt
= α

(
2k2x
k2
− 1

)
ŵ +

kxkz
k2

ρ̂ , (1)

dv̂

dt
= α

2kxky
k2

ŵ +
kykz
k2

ρ̂ , (2)

dŵ

dt
= α

2kxkz
k2

ŵ +

(
k2z
k2
− 1

)
ρ̂ , (3)

dρ̂

dt
= N2ŵ , (4)

where α = dU/dzL/Us is the dimensionless mean wind shear, N = [− (g/ρ0) (dρ0/dz)]
1/2 L/Us

is the scaled Brunt-Väisälä frequency, g is the gravitional acceleration, k =
(
k2x + k2y + k2z

)1/2
is

the wavenumber magnitude and the density is normalised as ρ/(ρ0Fr2) where Fr = Us/ (gL)1/2

is the characteristic Froude number.
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The equation for the evolution of the wavenumber vector, k(t) = (kx, ky, kz), is [5]

dkx
dt

=
dky
dt

= 0 ,
dkz
dt

+ αkx = 0 −→ k = (kx0, ky0, kz0 − αkx0t) , (5)

where (kx,0, ky,0, kz,0) is the initial wavenumber vector with magnitude k0. As a notation, the

horizontal wavenumber kh =
(
k2x + k2y

)1/2
is introduced, a quantity that, according to equation

(5), is independent of time.
As discussed in the introduction, Hanazaki & Hunt [3] provided an analytical solution of the

stratified RDT equations for equations (3) and (4). The solution is based on the introduction of
the variable ζ = ikz/kh in the equation which results from the combination of the density and
vertical-velocity equations, leading to the differential equation(

1− ζ2
) d2ρ̂

dζ2
− 2ζ

dρ̂

dζ
+ λ (1 + λ) ρ̂ = 0 , (6)

where

λ (1 + λ) = −
N2k2h
α2k2x

. (7)

Equation (6) can be solved in terms of Legendre functions of first and second order as

ρ̂ = APλ (ζ) +BQλ (ζ) , (8)

while the vertical-velocity Fourier transform is

ŵ = − iαkx
N2kh

[
AP ′λ (ζ) +BQ′λ (ζ)

]
, (9)

in which the primes indicate the derivative of the Legendre functions with respect to their
argument ζ.

After some algebra [6], it is possible to get the analytical solution for the other two velocity
components as

û = û0 +
α

N2k2h

{
A
[
k2x ζP

′
λ (ζ)− k2y Pλ (ζ)

]ζ
ζ0

+B
[
k2x ζQ

′
λ (ζ)− k2y Qλ (ζ)

]ζ
ζ0

}
, (10)

v̂ = v̂0 +
αkxky
N2k2h

{
A
[
ζP ′λ (ζ) + Pλ (ζ)

]ζ
ζ0

+B
[
ζQ′λ (ζ) +Qλ (ζ)

]ζ
ζ0

}
, (11)

where ζ0 = ikz,0/kh indicates the value of ζ at the initial time.
The constants A and B can be determined through the initial-density and vertical-velocity

fluctuations Fourier transforms by solving the linear system[
Pλ (ζ0) Qλ (ζ0)

P ′λ (ζ0) Q′λ (ζ0)

] [
A

B

]
=

[
ρ̂0(

iN2khŵ0

)
/ (αkx)

]
. (12)

The time evolution of the velocity and density perturbation vector q = [û, v̂, ŵ, ρ̂]T from its

initial state q0 = [û0, v̂0, ŵ0, ρ̂0]
T can be written as q = Mq0 where the matrix M is given by

M (t; k0) =


1 0 Fuw0 Fuρ0

0 1 Fvw0 Fvρ0

0 0 Fww0 Fwρ0

0 0 Fρw0 Fρρ0

 , (13)
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with the coefficients obtained from equations (10), (11), (9) and (8) and reported in [6].
The generic time-dependent spectral matrix Φ(t; k) is now introduced as

Φ(t; k) = <
[
q(t)qT∗(t)

]
=


Φxx Φxy Φxz Φxρ

Φxy Φyy Φyz Φyρ

Φxz Φyz Φzz Φzρ

Φxρ Φyρ Φzρ Φρρ

 , (14)

where the ∗ superscript indicates the complex conjugate operator. The evolution of the spectral
tensor (14) is given by

Φ(t; k) = M(t; k0) Φ(0; k0) MT (t; k0) . (15)

Equation (15) is the key result of this work since it determines the evolution of the spectral
tensor of velocity and density fluctuations starting from a generic initial condition Φ(0; k0) after
a generic time t.

The dimensionless initial velocity field can be assumed to be isotropic and characterised by
means of the von-Kármán spectrum [1] that, according to the present scaling, becomes

Φij(0; k0) =
Qu
4π

δijk
2
0 − ki,0kj,0(

1 + k20
)17/6 with Qu =

α1ε
2/3L2/3

Us
2 , (16)

where ε is the turbulent kinetic energy dissipation rate and α1 is the Kolmogorov constant [7].
The corresponding isotropic dimensionless density spectrum can be also written as a power law
[8] as

Φρρ(0; k0) =
Qρ(

1 + k20
)11/6 with Qρ =

5β1
6πα1

1

Fr4
ερUs

2

ρ02ε
Qu , (17)

where ερ is the dissipation rate of half the density variance and β1 is a universal constant
[7]. Equations (16) and (17) characterise the initial spectral tensor and allow some flexibility
by means of the parameters Qu and Qρ that represent two important properties of the
initial isotropic field: Qu is the normalised turbulent kinetic energy dissipation of the velocity
field, while Qρ/Qu is the ratio between the density and turbulent kinetic energy dissipation.
Starting with isotropic conditions brings the important property that the initial density-velocity
covariances are all zero, which reduces the addition in non-neutral stratification to the density
spectrum alone.

Following [1], the dimensionless eddy break-up time scale under neutral stratification can be
written in terms of the hypergeometric function

τM94 =
Γ

α
k−2/3

[
2F1

(
1

3
,
17

6
;
4

3
;−k−2

)]−1/2
, (18)

where Γ is the anisotropy parameter. The presence of the oscillation time scale introduced by
the Brunt-Väisälä frequency suggests a new time scale, τ , here assumed to be of the form

1

τ
=

1

τM94
+ cN −→ τ =

τM94

1 + cNτM94
. (19)

The advantage of this assumption is that the neutral time scale is kept exactly as in [1] and the
stability dependence comes from an independent parallel coupling of τ with N by the constant
c. Besides the scaling quantities Us and L and the initial spectral tensor parameters Qu and Qρ,
two other parameters are therefore needed to complete the model by determining the break-up
time scale, namely Γ and c. By assuming that Us is equal to the streamwise velocity standard
deviation σu, and according to the observations done in Ryningsnäs, some of these parameters
can be assumed to be constant (Γ and c) or function of the Richardson number (Qρ/Qu and
z/L), as discussed in [6].
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Figure 1. Landscape of the Ryningsnäs site.

3. Experimental setup
The experiment took close to the inland mansion of Ryningsnäs in Sweden, located 30 km inland
from the Swedish south-eastern coast. A complete description of the site and the equipment
has been reported by Arnqvist et al. [9] and here only some brief details are recalled. A
138 m tall meteorological tower was located in the northwestern corner of a 200 m by 250 m
large clearing surrounded by a forested area consisting of predominantly Scots Pine trees (with a
mean canopy height of hc = 20 m). Two wind turbines, labeled T1 and T2 in figure 1, are located
approximately 200 m (corresponding to 2.2 rotor diameters) from the tower in the southern and
north-eastern directions, respectively. The hub height is zhub,T1 = 100 m and zhub,T2 = 80 m,
for the turbine T1 and T2, respectively.

The experiment ran between November 2010 and February 2012, yielding a total of 10560
hours of available measurements. 6 tri-axial Metek sonic anemometers were placed at z =
40, 59, 80, 98, 120, 137.7 m complemented by additional Risø PT-100 temperature sensors at
z = 40, 98, 120, 137.7 m. The data were first sorted into 30-min blocks and, for each 30-min
time series, statistics were computed. At each measurement height the velocity components
were also rotated to a Cartesian reference frame xyz where the average lateral velocity, V , was
zero. The data were sorted according to the velocity at z = 100 m (in bins of 1 m/s) and to the
ratio hc/Lo, where Lo is the Obukhov length, evaluated by means of the conventional definition

Lo = − u3∗Θ0

κg 〈w′θ′〉
, (20)

where κ = 0.4 is the von Kármán constant, 〈w′θ′〉 is the vertical temperature flux determined
from the sonic anemometer at the lowest height, Θ0 is the reference temperature taken from
the temperature sensor at the lowest height, and u∗ is the friction velocity that is consistently

evaluated at the lowest height (z = 40 m), by u∗ =
[
〈w′u′〉2 + 〈v′w′〉2

]1/4
.

The western sector (with direction within [240◦, 280◦]) was defined as the sector where the
influence from the two turbines and the clearing was minimal (see [9] for a discussion regarding
the nearby clearing effects). Luckily, the western sector was also coincident with the most
probable mean wind direction as well as being the direction with the longest upwind forest
cover.
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4. Results
The model parameters have been calibrated against single-point spectra measured at Ryningsnäs
in the velocity bin where U(z = 100 m) ≈ 8 ms−1. Figure 2 shows a comparison between
the measured and modelled pre-multiplied spectra. Obviously the agreement here is a result
of the fitting method (which determines the parameters L, Qu, Qρ, Γ and c by maximising
the agreement between the measured and modelled pre-multiplied single-point velocity and
temperature spectra at some frequencies), although it is worth to notice that the uθ spectrum
was not used in the parameters determination, which can be considered here as an indicator
of the quality of the model. The single-point temperature spectra have not been shown as the
measured spectra for near-neutral to moderately stable conditions shows limited quality with
large high frequency scatter. This is a known problem of sonic anemometers and does not affect
the co-variances [10]. Due to the high frequency scatter causing upward tails of the spectra
and the subsequent problem with model comparison the temperature spectra have not been
considered in the present analysis.

At this point, it is worth computing the integral of the spectra providing the measured velocity
and temperature covariances, shown in figure 3. It is visible that the model is able to compute
the velocity variances and the shear stress 〈u′w′〉 as well as the heat fluxes 〈u′θ′〉 and 〈w′θ′〉.
All these integral quantities appear to be well estimated, underlining the fact that the present
model complements [1, 2, 4]. The only information going in to the model is the background
stratification and shear as well as horizontal velocity variance. It seems thus that the mean
distortion by temperature and velocity gradients is enough to reproduce the same distribution
of energy between different Reynold stress components and heat fluxes that is observed in nature.

Both single-point spectra and associated integrals are however a direct result of the fitting
of the spectra and their agreement with the measurements is expected. The fitting process
was performed by using only single-point data with no information about two-point spectra.
Therefore a comparison of the model prediction with two-point spectra represents a way to
validate the proposed model. Figures 4 and 5 show two-point data that assess how well the model
performs. Figure 4 shows the covariance between two different heights for the uu, vv, ww cross
spectra in three different stability conditions (from nearly neutral to stable). The covariances are
here normalised with the product of the standard deviations of the relative velocity components
at the heights z1 and z2, and plotted against the height difference ∆z = |z2 − z1| normalised by
the average wind speed U = [U(z1) + U(z2)] /2. The advantage of this normalisation is discussed
in [11] where it is demonstrated that the data collapse well. As visible in the figure, the modelled
covariances have the same qualitative behaviour of the measured data, although with a slight
overestimation of the covariances (especially in uu). The stability trend is correctly predicted
for all the velocity components.

Figure 5 shows the comparison between the phase of the cross-spectra between the two
different heights (for a frequency of 0.01 Hz) against the variable ∆z/U where a monotonic trend
is visible (except for ww that is scattered around a zero-phase shift). Here the model is able to
qualitatively follow the data trend but the phase shift is slightly underestimated. No significant
stability trend can be discerned in both measurements and modelled phases. Noteworthy, the
phases follow the inequality φw < φu < φv proposed by [12] for neutral stratification.

5. Conclusions
In the present paper a new model to estimate the velocity and temperature spectral tensor
of the atmospheric boundary layer is proposed. The model is based on an analytical solution
of the stratified RDT equations for a homogeneous turbulent flow subjected to homogeneous
shear and stable stratification. This approach allows to determine the time-wise evolution of
the Fourier transform of the velocity and density fluctuations starting from an arbitrary initial
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Figure 2. Comparison of the pre-multiplied spectra at z ≈ 138 m and U(z = 100 m) ≈ 8 ms−1

for (a − b) Neutral conditions (Ri ≈ 0.07), (c − d) Near-Neutral Stable conditions (Ri ≈ 0.10)
and (e − f) Stable conditions (Ri ≈ 0.14). Experimental data: (◦) Fuu, (+) Fvv, (∗) Fww, (2)
Fuw, (5) Fuθ, (4) Fwθ. Model: (solid line) Fuu, Fuw, Fuθ, Fwθ. (dashed line) Fvv. (dash-dotted
line) Fww.
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Figure 3. Comparison of the integral of the single-point spectra when U(z = 100 m) ≈ 8 ms−1

for Near-Neutral Stable conditions (Ri ≈ 0.10) for zero separation distance. Experimental data:
(◦)

〈
u′2
〉
, (+)

〈
v′2
〉
, (∗)

〈
w′2
〉
, (2) −〈u′w′〉, (5) 〈u′θ′〉, (4) −〈w′θ′〉. Model: (solid line)

〈
u′2
〉
,

−〈u′w′〉, 〈u′θ′〉, −〈w′θ′〉. (dashed line)
〈
v′2
〉
. (dash-dotted line)

〈
w′2
〉
.

state, as long as the rapid-distortion closure is valid. By following the same approach of Mann
[1], the equilibrium state of the time-dependent spectral tensor is determined by introducing a
wavenumber-dependent time scale.

The model is based upon a number of scaling quantities and parameters. These have all
been determined by optimising the comparison between model outputs and measurements over
a forested area [2, 9]. According to our observations, the proposed model is able to determine
reasonably well the single-point velocity spectra and the single-point velocity and temperature
cross-spectra (including Fuθ, which was purposefully kept out of the optimisation approach) for
different Richardson numbers. Although the model is a function of only one initial velocity scale
and one initial temperature scale it predicts the same distribution of energy between all the
different covariances as is observed in the measurements. This suggests that in turbulent flows
at the height span and velocity range that is interesting to wind energy the rapid distortion
equations provide a valid approximation to the flow in a statistical sense. When evaluated
against vertically separated two-point spectra, the model showed qualitative agreement with the
available data both in terms of decay with separation distance and the tendency of decreasing
correlation with increasing stratification.
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component (c). Experimental data: (◦) ϕu(z1, z2), (+) ϕv(z1, z2), (∗) ϕw(z1, z2). Model
prediction: (solid line)

〈
u′2
〉
, (dashed line)

〈
v′2
〉
, (dash-dotted line)

〈
w′2
〉
.
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