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Abstract. Gaussian Klauder coherent states are discussed in the context of the infinite well
quantum model, otherwise known as the particle in a box. A supersymmetric partner system
is also presented, as well as a construction of coherent states in this new system. We show
that these states can be chosen, in both systems to have many properties usually expected for
coherent states. In particular, they yield highly localised wave packets for a short period of
time, which evolve in a quasi-classical manner and which saturate approximately Heisenberg
uncertainty relation. These studies are elaborated in one- and two-dimensional contexts. Finally,
some relations are established between the Gaussian states being mostly used here and the
generalised coherent states, which are more standardly found in the literature.

1. Introduction
The study of coherent states in quantum mechanics is a subject very well documented [1–6].
These states have been approached from different points of view and we can cite, for example,
their definition as eigenstates of an annihilation operator and as minimium uncertainty states.
They have also been defined for a large amount of solvable quantum systems and their properties
have been analysed [6–8].

One approach, that has not deserved much attention until now, is the one using the so-called
Gaussian Klauder coherent states [9]. They are given as a superposition of energy eigenstates
that leads to a good localisation in the phase space of the system under consideration. For the
harmonic oscillator, these last states are a good approximation of the usual coherent states.
It has been shown that it is also the case for the infinite well and the Morse systems [8–11].
It means that they are good states for investigating physical properties of the systems under
consideration (behaviour of the position and momentum observables and uncertainty relation,
for example).

Even if most of the works were focusing on one dimensional (1D) systems, some results have
been given in the two dimensional (2D) case [10]. In particular, the 2D infinite well, having
a quadratic degenerate energy spectrum, has attracted some attention and the construction of
coherent states had to be adjusted [10,12] .

All these considerations have been extended using a supersymmetric (SUSY) approach [13].
Indeed, SUSY partner Hamiltonians have been constructed in 1D and 2D using intertwining
relations and factorisation methods [13–15]. These new Hamiltonians are shown to be deeply

Mielnik50 IOP Publishing
Journal of Physics: Conference Series 624 (2015) 012016 doi:10.1088/1742-6596/624/1/012016

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



related to the original ones. The coherent states systems are as well closely related to the original
ones.

In this work, we consider the infinite well quantum system both in 1D and 2D and their SUSY
partners. We then construct the Gaussian Klauder coherent states (GCS) and investigate their
properties. In Section 2, we show how the SUSY partners of the 1D infinite well are obtained.
New potentials are thus produced that depend on two parameters (one is an integer and the
other one is a real number). The complete energy spectra of the new Hamiltonians are obtained.
The GCS are then constructed and their properties are exhibited. In Section 3, we generalise
the preceding approach to 2D where the SUSY partners exhibit more freedom. Complete energy
spectra are also produced. We generalise the definition of GCS to this context. We discuss as
well another type of coherent states, the so-called generalised coherent states (GeCS). Because
of the degeneracy of the energy spectrum, the usual definition of those states as the eigenstates
of an annihilation operator has to be adjusted. We finish the paper with some conclusions and
questions for future work.

2. The 1D infinite well and SUSY partners
2.1. Description of the models
Let us first set our notational convention concerning the infinite square well [9] to be used
throughout this work. A particle of mass M is subject to a potential taken to be

V (x) =

{
0, 0 < x < π

∞, otherwise.
(1)

The stationary eigenstates and the discrete energies of this system are

ψn(x) =

√
2

π
sinnx, En =

~2

2M
n2, n = 1, 2, . . . (2)

In the following, we will use dimensionless units, setting ~ = 1, M = 1/2, such that the

Hamiltonian is Hx = − d2

dx2 + V (x).
SUSY partners of the infinite well have been constructed [13] starting from usual intertwining

relations involving the supercharges Qx, Q†x. These can be defined, in particular, as differential
operators of second order. Let us summarize the results.

Starting from the Hamiltonian Hx, a SUSY partner Hamiltonian H̃x = − d2

dx2 + Ṽ (x) is
obtained from the relations

H̃xQx = QxHx, Q†xH̃x = HxQ
†
x. (3)

For the infinite well, with V (x) = 0 in the domain x ∈]0, π[, internal consistency constrains the
supercharges to take the form

Qx =
d2

dx2
+ η(x)

d

dx
+ ε+

1

2
(η2(x)− η′(x)) (4)

and

Q†x =
d2

dx2
− η(x)

d

dx
+ ε+

1

2
(η2(x)− 3η′(x)), (5)

where ε is an arbitrary constant. The function η(x) satisfies (in the so-called confluent case [14]):

2η(x)η′′(x)− (η′(x))2 − 4η2(x)η′(x) + η4(x) + 4εη2(x) = 0 (6)
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and the new potential is given as
Ṽ (x) = 2η′(x). (7)

Moreover, the products Q†xQx and QxQ
†
x are respectively polynomials in Hx and H̃x:

Q†xQx = (Hx − ε)2, QxQ
†
x = (H̃x − ε)2. (8)

The resolution of (6) leads to admissible solutions for ε = k2 with k = 1, 2, . . . A particular
energy ε = Ek within the original spectrum thus needs to be chosen for the supersymmetry. We
get [14]

η(x; k, ω) =
4k sin2(kx)

sin(2kx) + 2k(πω − x)
, (9)

where ω is an arbitrary constant. The corresponding potentials are given as

Ṽ (x; k, ω) =


32k2 sin(kx)[sin(kx) + k(πω − x) cos(kx)]

[sin(2kx) + 2k(πω − x)]2
, 0 < x < π

∞, otherwise.

(10)

These potentials can be shown to be non singular if ω ∈] −∞, 0[ ∪ ]1,∞[. Two instances are
illustrated on Figure 1, one for each of the disconnected subsets of the parameter space of ω, i.e.
ω = 2 and ω = −1. We thus observe that changing the sign of (ω − 1/2) reverses this potential
about its vertical axis. Decreasing the magnitude of |ω− 1/2| accentuates the departure from a
sinusoidal potential. The parameter k controls the amount of oscillations.

Figure 1 - SUSY potential Ṽ (x; k = 10, ω) as a function of x, for (left) ω = 2 and (right) ω = −1.

Notice the striking symmetry under the Z2 action ω → 1 − ω, x → π − x. This symmetry
is accidental in the sense that it is not a consequence of the SUSY algebra, nor the imposed
intertwining relations (3). Still, it will have interesting effects on the coherent states built out
of SUSY potential functions, as we shall discuss in Section 2.3.

The normalised SUSY eigenstates ψ̃n(x) are obtained from the intertwining relations (3) and
the expressions (8):

ψ̃n(x; k, ω) = (ε− En)−1Qxψn(x), (n 6= k). (11)

More explicitly, we get

ψ̃n(x; k, ω) =

√
2

π

sin(nx)[sin(2kx)(n2 + k2) + 2k(πω − x)(n2 − k2)]− 4nk cos(nx) sin2(kx)

(n2 − k2)[sin(2kx) + 2k(πω − x)]
(12)
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For n 6= k, they are physical states, i.e. they are normalisable and such that ψ̃n(0; k, ω) =
ψ̃n(π; k, ω) = 0, since η(0; k, ω) = η(π; k, ω) = 0. The corresponding energies are En = n2 as in
the original case.

For n = k, since ε = Ek = k2, this procedure does not yield ψ̃k(x) because Qxψk(x) = 0.
The completeness of the spectrum of H̃x has been investigated [14] and a single additional state
was found. For the sake of completeness, we now explain how this missing state ψ̃k(x) could be
obtained. It is, in fact, the simultaneous solution to the system of equations

Q†xψ̃k(x) = 0, Hxψ̃k(x) = εψ̃k(x), (13)

that reduces to a first order differential equation on ψ̃k(x):

−η(x; k, ω)
dψ̃k(x)

dx
+ (Ṽ (x; k, ω) +

1

2
(η2(x; k, ω)− 3

dη(x; k, ω)

dx
))ψ̃k(x) = 0. (14)

From [14], we know that η′(x) = η2(x) + 2β(x)η(x), with β(x) solving the Riccati equation
β′(x) + β2(x) = −ε. Equation (14) thus becomes

dψ̃k(x)

dx
= (η(x; k, ω) + β(x; k))ψ̃k(x) (15)

and the normalised solution of energy ε = Ek = k2 is given as

ψ̃k(x; k, ω) =

√
2

π
sin(kx)

2πk
√
ω(ω − 1)

sin(2kx) + 2k(πω − x)
. (16)

It is normalisable and such that ψ̃k(0, k, ω) = ψ̃k(π, k, ω) = 0. With this additional state the
spectrum of H̃x is thus complete.

2.2. Gaussian Klauder coherent states for the infinite well
As mentioned in the introduction, the Gaussian Klauder coherent states (GCS) can be built
for many different systems as a special superposition of energy eigenstates in order to get a
reasonably well localised probability density distribution for a short period of time [9]. They
have proven to be relevant for the study of the harmonic oscillator and the infinite well. For this
last system, we recently [11] formalised the relation between those states and the generalised
coherent states (GeCS), constructed as eigenstates of an annihilation operator of the system
under consideration. We have shown in particular that the GCS can be chosen to reproduce
approximately the GeCS in some specific area of their parameter space. In this section, we thus
deal only with those GCS and summarise their properties.

For real constants φ0, n0 ≥ 0 and σ0 > 0, they are defined as the Gaussian combination

ΨG(x, t;n0, σ0, φ0) =
∞∑
n=1

CG
n (n0, σ0, φ0)e

−iEntψn(x), CG
n (n0, σ0, φ0) =

e
− (n−n0)2

4σ2
0
−inφ0√

NG(n0, σ0)
, (17)

where the normalisation factor is

NG(n0, σ0) =

∞∑
n=0

e
− (n−n0)2

2σ2
0 . (18)

The resolution of the identity is satisfied for theses states, as well as time stability and continuity
in n0 and σ0 [9].
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Interestingly, not only (17) has a Gaussian distribution in n, the sum can be carried out
approximately to yield a Gaussian wavefunction. Indeed, as demonstrated in [11],

ΨG(n0, σ0, φ0;x, t) '
1

(
√

2πs)1/2
exp

[
−(x−X)2

4s2
+ iPx

]
, (19)

(up to a x-independent phase factor), for x ∈ [0, π], t > 0 and with the following shorthands:

X = φ0 +
Pt

1/2
, P = n0, s =

1

2σ
, σ2 =

τ

4(τ2 + t2)
, τ = (4σ20)−1.

Here “'” stresses an approximate validity under the conditions n0 � σ0 � 1, X � s, π−X � s,
and t� τ .

This result implies, as alluded to earlier, that the state is a well localised wave packet bouncing
back and forth on the walls of the well, in a quasi-classical fashion. Its initial width is set by
the parameter σ0, which also determines the time scale τ of the Lorentzian decay of the packet.
On the other hand, the velocity of the motion scales as the parameter n0. Finally, the phase φ0
establishes the initial position of the wave packet. Here, of course, we naturally identify X ' 〈x〉
and P ' 〈p〉.

Another remarkable consequence of (19) is that it explains why the GCS almost saturate
Heisenberg uncertainty relation, when the conditions of validity are satisfied [11]. This is readily
understood by recalling the standard fact that the most general wave function minimizing ∆x∆p
is [5]

Ψ(x, t) = A(t)e−
(x−〈x〉)2

4s2
+i〈p〉x. (20)

2.3. Gaussian Klauder coherent states for the SUSY partners
The construction of the GCS can easily be attempted for the SUSY partner in just the same
way it was performed in the original system:

Ψ̃G(x, t;n0, σ0, φ0) =

∞∑
n=1

CG
n (n0, σ0, φ0)e

−iEntψ̃n(x). (21)

However, the algebraic construction reviewed in section 2.1 a priori does not enforce (21) to
retain the well-understood quasi-classical behaviour summarised in (19).

We notice on the other hand that the SUSY stationary states (11) with n 6= k, can be
regarded as perturbed versions of the initial eigenmodes (2), provided the overall sign is chosen
as in (12). This is especially obvious at k � 1, i.e. by using a high energy mode for the SUSY
mapping.

The case n = k deserves here, like in section 2.1, some special care. As clear from (16), the
perturbative equivalence ψn(x) ' ψ̃n(x; k � 1, ω) no longer holds for this state. Thus, the mode
ψ̃k(x; k, ω) corresponding to the energy used for the SUSY mapping is always fundamentally
different from its original homologue ψk(x).

The consequences of these remarks for the GCS now appear more distinctly. Whenever n0
is chosen far (i.e. out of a few standard deviations) from k, the GCS of the SUSY partner
agree with the GCS of the original system. The analysis of section 2.2 then carries on, and a
localised Gaussian quasi-classical wave packet minimizing approximately Heisenberg relation is
generated.

If n0 and k are of the same order, on the other hand, some discrepant features are expected for
the SUSY GCS. As a concrete example, Figure 2 exhibits the time-evolution of the probability
density distribution calculated from (21), in the coincident case n0 = k. Clearly, an effect
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of the supersymmetry is to generate superimposed wavelets on the principal Gaussian wave
packet. As time evolves, moreover, some side modes appear next to the dominant packet.
Numerical calculations show that these “harmonics” coherently follow the principal peak in its
displacements inside the well as time evolves. The wave packet slowly spreads and bounces on
the walls as in the original construction.

(a) Initial distribution (b) Before 1st bounce (c) After 1st bounce

t = 0.000 t = 0.005 t = 0.012

Figure 2 - Time-evolution of the probability density distribution inside the well for the SUSY coherent
state Ψ̃G(x, t;n0 = 100, σ0 = 10, φ0 = π/2). The SUSY parameters are: k = 100, ω = 2.

Let us now turn to the interesting question of the effect of the SUSY parameter ω on the
GCS. Our numerical calculations seem to suggest that the magnitude of |ω− 1/2| weakly affect
the behaviour of the states. Thus, the above discussion continues to apply. What is more subtle
is the effect of changing the sign of (ω−1/2). In spite of its simple mirror effect on the potential,
as discussed in section 2.1, it tremendously affects the GCS. As shown on Figure 3, the Z2 action
suppresses the wavelets and side-modes, even for the coincident case n0 = k. This is surprising
since the above discussion is still applicable, so we might still have expected some disagreement
due to the exceptional state ψ̃k(x; k, ω). At the level of the wave functions (12) and (16), the Z2

action acts as an alternating phase factor (except at energy Ek, where the alternating pattern
is broken): ψ̃n → − cos(nπ)ψ̃n, ψ̃k → + cos(kπ)ψ̃k (provided we also map x→ π − x).

Note that although the GCS of the SUSY Hamiltonian can be chosen to be almost identical
to the GCS of the original system, the potential functions remain very different. Indeed, the
limit k � 1 emphatically does not lead to Ṽ (x; k, ω) ' 0 in [0, π]. Thus, the construction of
well behaved coherent states for this nontrivial system is a remarkable consequence of the SUSY
approach.

(a) Initial distribution (b) Before 1st bounce (c) After 1st bounce

t = 0.000 t = 0.005 t = 0.012

Figure 3 - Time-evolution of the probability density distribution inside the well for the SUSY coherent
state Ψ̃G(x, t;n0 = 100, σ0 = 10, φ0 = π/2). The SUSY parameters are: k = 100, ω = −1.

As a concluding side comment, let us note that the classical dynamics in the SUSY
system (10), which is generally expected for coherent state constructions, is not immediately
transparent. A minimal criteria for classicality might thus be chosen to be a relatively slowly
evolving and highly localized wave envelope. We have adhered to this point of view in the
current work.

Mielnik50 IOP Publishing
Journal of Physics: Conference Series 624 (2015) 012016 doi:10.1088/1742-6596/624/1/012016

6



3. The 2D infinite well and SUSY partners
3.1. Description of the original model
We consider again a particle of mass 1/2, now assumed to move in a square 2D box of size π.
The Hamiltonian is given as

H = Hx +Hy, (22)

where Hx and Hy are the 1D Hamiltonians of the infinite well in the directions x and y
respectively. The corresponding normalised eigenstates and discrete energies are

Ψn,m(x, y) = ψn(x)ψm(y) =
2

π
sinnx sinmy (23)

and
En,m = n2 +m2, (24)

where n,m = 1, 2, . . .
We see that this quadratic energy spectrum presents two types of degeneracies. The first type

is a permutation degeneracy since the eigenstates Ψn,m(x, y) and Ψm,n(x, y), n 6= m, are distinct
with the same energy En,m. The second type is called accidental [10,12] or arithmetic [16]. For
example, we have E5,5 = E1,7 = 50 with Ψ5,5(x, y) and Ψ1,7(x, y) as distinct eigenfunctions
and E1,8 = E4,7 = 65 with Ψ1,8(x, y) and Ψ4,7(x, y) as distinct eigenfunctions. The problem
of identifying the number and type of these degeneracies for the infinite well has already been
considered [10,12,16].

We present here some notations that will be useful in the discussion of coherent states of such
a system:

• We rank the energies (24) in increasing order and write them as Eν , with index ν = 0, 1, . . .
We also introduce the shifted energies Eν = Eν − E0.

• As alluded to above, more than one state may correspond to Eν . We thus define µν as
the index for the summation of all the eigenstates associated to the degenerate energy Eν
and dν as the associated number of degeneracies. The index µν goes from 0 to dν − 1.
Although they are irrelevant for our purposes, let us point out that explicit formula for the
existence and number of accidental degeneracies exist in the number theoretic literature.
They involve the number of divisors of Eν of the form 4k + 1 and 4k + 3, k ∈ N.

• The indices (n,m) corresponding to a state alternatively referred to with (ν, µν) are written
(nν,µν ,mν,µν ).

• We rename the eigenstate Ψnν,µν ,mν,µν (x, y), the state corresponding to the energy Eν and
degeneracy index µν , as Ψν,µν (x, y).

• To each energy Eν , we can thus associate a single “cumulative” eigenstate constructed as a
superposition of the states Ψν,µν (x, y). It takes the form

Φν(x, y) =

dν−1∑
µν=0

γν,µνΨν,µν (x, y), (25)

where the coefficients γν,µν are arbitrary non zero complex numbers. Note that we have
taken into account the permutation degeneracy in the superposition formula.

• Finally, a polar parametrization (ρν =
√
Eν , tan θν,µν =

nν,µν
mν,µν

) is introduced. It provides

an intuitive picture of the indices ν and µν . As exemplified in Figure 4, the energy index ν
is associated with the radius ρν in (m,n)-plane, while the degeneracy index µν is associated
with the angle θν,µν . For definiteness, let us assume that µν increases as nν increases, while
mν decreases (for fixed ν). Put differently, µν increases as the angle θν,µν increases.
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Figure 4 - Polar parametrisation of eigenstates

3.2. Construction of SUSY partners
2D generalisations of SUSY quantum mechanics have been proposed some time ago and,
in particular, the approach of Ioffe and collaborators [15] has given some relevant results.
Unfortunately, using supercharges that are essentially a linear combination of the ones used
in 1D does not lead to the new potentials we have already obtained in 1D. An alternative
approach is considered here.

A SUSY partner Hamiltonian which is separable in x and y could be obtained from SUSY 1D

Hamiltonians as constructed in Section 2. Indeed, let us take Q = QxQy and Q† = Q†xQ
†
y where

Qx, Q
†
x and Qy, Q

†
y satisfy the interwining 1D relations (3) in the corresponding variables. We

thus easily get
H̃Q† = Q†H, QH̃ = HQ, (26)

where H̃ = H̃x + H̃y with H̃x = − d2

dx2 + V (x, k1, ω1) and H̃y = − d2

dy2 + V (y, k2, ω2). The

corresponding potentials are explicitly given in (10).
Eigenstates of the SUSY partner Hamiltonian H̃ are thus easily constructed from

Ψ̃n,m(x, y; k1, k2, ω1, ω2) = ((k21 − n2)(k22 −m2))−1Q+Ψn,m(x, y) = ψ̃n(x; k1, ω1)ψ̃m(y; k2, ω2),
(27)

for n 6= k1,m 6= k2. The corresponding energies are En,m = (24). In 1D, we had to add one
state (16) in order to get a complete spectrum. In 2D, we have to add more states. Indeed, we
also get the following states:

Ψ̃k1,m(x, y; k1, k2, ω1, ω2) = ψ̃k1(x; k1, ω1)ψ̃m(y; k2, ω2), (28)

with energy Ek1,m,

Ψ̃n,k2(x, y; k1, k2, ω1, ω2) = ψ̃n(x; k1, ω1)ψ̃k2(y; k2, ω2), (29)

with energy En,k2 , and finally the eigenstate with energy Ek1,k2 is given as

Ψ̃k1,k2(x, y; k1, k2, ω1, ω2) = ψ̃k1(x; k1, ω1)ψ̃k2(y; k2, ω2). (30)

3.3. Coherent states
Generalised and Gaussian coherent states have been constructed for the usual 2D infinite
well [10, 12]. The generalised coherent states (GeCS) are as usual defined as eigenstates of an
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annihilation operator of the system under consideration. But in the 2D case, due to the existence
of a quadratic degenerate energy spectrum, we had to express the energies in increasing order
and also to make a superposition of the different eigenstates with the same energy as given
in (25). The construction of an annihilation operator and numerical calculations giving the
behaviour of those states can be found in [12]. They have been shown to be closely related to
GCS for some values of the coherent states parameters.

We will slightly adjust these constructions in this work.

3.3.1. Gaussian coherent states The definition of GCS is proposed as a direct generalisation
of the 1D case. Indeed, we take

Ψ2D
G (x, y, t;n0,m0, σn0 , σm0 , φn0 , φm0) = ΨG(x, t;n0, σn0 , φn0)ΨG(y, t;m0, σm0 , φm0), (31)

with ΨG = (17). Explicitly, we get

Ψ2D
G (x, y, t;n0,m0, σn0 , σm0 , φn0 , φm0) =

∞∑
n=1

∞∑
m=1

CG
n,me−iEn,mtΨm,n(x, y), (32)

where

CG
n,m = CG

n,m(n0,m0, σn0 , σm0 , φn0 , φm0) = CG
n (n0, σn0 , φn0)CG

m(m0, σm0 , φm0). (33)

This definition pays off since the analysis of [11] reviewed in section 2.2 continues to apply
here. As in the 1D case, we get a well localised state and quasi-classical behaviour. Approximate
saturation of the Heisenberg uncertainty bound is also achieved, as in the 1D setting.

Figure 5 - Probability density distribution and time evolution of the position expectation value of the
SUSY GCS in 2D until t = 0.012. State parameters are chosen as: n0 = m0 = 100, σn0 = σm0 = 10,

φn0 = π/2, and φn0 = 0. SUSY parameters are: k1 = 100, k2 = 50, ω1 = −1, and ω2 = 2.

Such a definition of GCS is easily extended to the SUSY case where the eigenstates Ψm,n(x, y)

in (32) are replaced by the eigenstates Ψ̃m,n(x, y). Again, the factorization of the state yields
a straightforward generalisation of the 1D results. As an example, Figure 5 shows a trace of
the time evolution of the position expectation value for the SUSY GCS in 2D. A neat localized
packet bouncing on the walls is obtained once again.
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3.3.2. Generalised coherent states The GeCs are eigenstates of an annihilation operator of the
2D infinite well and they have been defined as [12]

ΨGe(x, y, t; z) =
1√

NGe(z)

∞∑
ν=0

zν√
ρ(ν)

e−iEνtΦν(x, y), (34)

with the normalisation factor

NGe(z) ≡
∞∑
ν=0

|z|2ν

ρ(ν)

and

ρ(ν) =

{
1, if ν = 0

Πν
i=1Ei, if ν 6= 0.

(35)

These states depend on a continuous complex parameter z as in the 1D case. With respect to
an alternative approach [12], more freedom is given to the states Φν(x, y) being a superposition
of states with same energy Eν .

4. Conclusion and future work
SUSY partners of the infinite well have been constructed and have shown to satisfy relevant
properties compared with the ones of the original quantum system. In particular, for the
1D system, we have constructed a set of coherent states (GCS) which depends on real and
discrete parameters. The relation between those states and the generalised ones (GeCS) has
been formally given [11] and we have shown the behaviour of the GCS case.

In the 2D case, we have extended the construction of SUSY partners to get similar potentials
as in 1D. More parameters are involved in this context and the existence of degeneracies in the
energy spectrum has lead us to adjust the definition of coherent sates with respect with the ones
used in the 1D case. The GCS are constructed in order to have a good behaviour with respect
to localisation in the usual case as well as in the SUSY case. We have also constructed GeCS in
the 2D setting.

It remains to make a link between both types of states. The use of the polar parametrisation
is clearly a way to solve the problem. Indeed, the GCS may be written as

ΨG(x, y, t) ≡ 1√
NG

∞∑
ν=0

e
(ρν−ρ̄0)2

4σ2
0 e−iEνtΨG,ν(x, y). (36)

The Gaussian terms depending on the radial variables could thus be related to the factor

zν(ρ(ν))−
1
2 in (34) as it was the case in 1D [11]. The Gaussian terms involving the angular

variables are related to the coefficients of the superposition of eigenstates with same energy.
This way, the states ΨG,ν(x, y) will be related to Φν(x, y) in (34). As mentioned earlier, a
particular approach of this question in 2D [10, 12] has shown that GeCS are in fact a good
approximation of GCS. In a future work, we hope to formally solve this problem.
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