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Abstract. The problem of controlling quantum wavefunctions by means of potential jolts
and periods of free evolution was broached by Bogdan Mielnik in 1977. This quantum control
became a subject of great interest for the preparation of atomic and particle systems. We point
out here that these manipulations are also realized in paraxial geometric and wave optics, with
lenses and free spaces, and even more transparently than with matter.
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1. Introduction
In his 1977 paper, Bogdan Mielnik [1] showed that the free evolution of quantum wavefunctions
can be reversed in time by applying an appropriate succession of harmonic oscillator potential
jolts, within the Schrödinger formalism of quantum mechanics. This he reformulated in 1986 [2]
as the existence of evolution loops, namely products of operators which are equivalent to a (or
the) unit transformation. Mielnik’s evolution loop hexagon, shown in Fig. 1, appeared in this
paper and was the logo for the 2014 conference on Quantum control, exact or perturbative,
linear or nonlinear, held at cinvestav and topic of these Proceedings. Much of the context for
Mielnik’s hexagon was doubtless supported by a previous fundamental article of Bia lynicki-
Birula, Mielnik and Plebański [3] that analyzes the Baker-Campbell-Hausdorff problem of
exchanging the exponentials of non-commuting operators.

The purpose of this article is to present the same problems (and solutions) when the system
is optical, and classical, to be compared with the quantum system. The idealized potential jolts
are replaced by rather real refracting surfaces, while the time periods τi when the system is
free become, naturally enough, spaces zi of free propagation along the optical axis — which
by tradition points horizontally to the right. Moreover, as I shall contend, optical systems are
richer than the Schrödinger’s model of quantum mechanics. This is so because these refracting
surfaces can mimick harmonic oscillator jolts only in the paraxial régime, where ray or beam
angles are small and we look near to the optical axis. Beyond the paraxial régime of geometric
and wave optics extends the metaxial régime, which constitutes a series expansion involving the
nonlinearities called aberrations. Finally, there is the global régime, where the true nature of
optical systems requires rays or beams in all directions on the sphere — or circle, or hypersphere,
according to the dimension of the model.

In Section 2 we present three mathematical realizations of the symplectic algebra of 2 × 2
matrices that describe quadratic systems: the quantum oscillator jolts and free evolution, and
also the paraxial lenses and empty spaces given in Section 3. In Section 4 we point out the
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Figure 1. The Mielnik hexagon illustrates the application of six harmonic oscillator potential
jolts of strength 1/τ , separated by six time periods τ of free evolution. This was the logotype of
the conference on Quantum control, exact or perturbative, linear or nonlinear, held at cinvestav
in October 2014.

subtle but important difference between classical and wave/quantum systems contained in the
symplectic versus metaplectic units by means of the Bargmann parametrization of the universal
cover of the symplectic groups, built out of products of lower- and upper-triangular matrices that
realize lenses and free spaces. In Section 5 we collect some conclusions and point to extensions.

2. Three models under one algebra
Consider the following basis of three linearly independent functions ji(q, p) that are quadratic
in q (position), and p (momentum),

j+ := 1
2p

2, j− := 1
2q

2, j0 = 1
2pq. (1)

Corresponding to these we have three linear operators, built with Poisson brackets ̄i := {ji, ◦}
with the classical coordinates of position and momentum,

̄+ = −p∂q, ̄− = q∂p, ̄0 = 1
2(p∂p−q∂q), (2)

which act on beam density functions ρ(q, p). The usual and unique Schrödinger quantization

of (1) from the basic operators of position and momentum, q 7→ Q̂ = q · and p 7→ P̂ = −i∂q
yields the following three up-to-second degree operators Ĵi,

Ĵ+ = −1
2∂

2
q , Ĵ− = 1

2q
2 ·, Ĵ0 = −1

4 i(q∂q+∂qq), (3)

that are hermitian on the Hilbert space L2(R) in the single variable q ∈ R. Finally, we have the
basis of three 2× 2 real traceless matrices Ji, given by

J+ =

(
0 1
0 0

)
, J− =

(
0 0
−1 0

)
, J0 = 1

2

(
1 0
0 −1

)
. (4)

These matrices present the algebra sp(2,R) and its similar ones, acting on the phase space

coordinates that we can fit into a two-vector
(
q
p

)
.
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The common property of the four triads of J ’s (the notation stands for j, ̄, Ĵ or J) is to
realize the Lie algebra so(2, 1) = su(1, 1) = sp(2,R), whose defining set of Lie brackets can be
written as

{[J0,J+]} = +ιJ+, {[J0,J−]} = −ιJ−, {[J+,J−]} = −2ιJ0. (5)

For the functions ji in (1), the Lie bracket is the classical Poisson bracket {[ja, jb]} ≡ {ja, jb} :=
(∂qja)(∂pjb) − (∂pja)(∂qjb) with ι = 1. The phase space operators (2) obey (5) with the
commutator Lie bracket {[̄a, ̄b]} ≡ [̄a, ̄b] := ̄a̄b− ̄b̄a also with ι = 1, as do the matrices in the
realization (4). Only for the quantum-mechanical operators (3) the commutation relations (5)
carry ι = i to preserve hermiticity in L2(R).

Although all four sets of objects (1)–(4) realize the same Lie algebra, the exponentiation of
the two operator sets, the classical (2) and the quantum (3) to Lie groups do not quite give the
same group. While the matrix realization (4) clearly indicates that the group is that of 2 × 2
real matrices of unit determinant SL(2,R) = Sp(2,R), the quantum (and paraxial wave-optical)
provides an integral transform realization of its two-fold cover, the metaplectic group Mp(2,R),
as we shall elaborate below.

3. Free propagation, jolts and lenses
The formalism introduced in the previous section refers to one-dimensional models, but provides
the gist of the matter. It can be made N -dimensional with the symplectic algebras sp(2N ,R);
if the systems are isotropic, a radial sp(2,R) algebra will arise, also satisfying (5), where the
generator J+ will receive an extra ‘centrifugal’ term ∼ µ/q2 that will lie, for µ ≥ −1

4 , among

the lower-bound discrete series Dk
+ of sp(2,R). Yet, the 2× 2 matrix presentation of this algebra

in (4) is unchanged.
Rigorous mathematics are not lacking, but let me appeal to the common understanding of

Schrödinger quantum mechanics, while drawing a parallel sketch of geometric and wave paraxial
optics. In this context we look first at the phase space variables as operators. The spectrum
of the position operator Q is the set of observation points on a line, assumed to be continuous
q ∈ R. Here the quantum wave function is ‘known’ at a given time τ ; in geometric optics
q is the coordinate of the point where a line of light crosses a one-dimensional screen that is
perpendicular to the optical axis at a given distance z; in wave optics z plays the same role as
τ in quantum mechanics, the measurement being the (complex) elongation of the wavefield on
a screen placed at z.

The momentum operator P is more amenable to discussion, since in all models it relates the
evolution of Q within the screen under infinitesimal propagation in τ or z; thence the quantum
P̂ = −i∂q. In geometric optics, the matter is more geometrical: see Fig. 2. A ray of position q,
and inclined by an angle θ to the optical axis will, upon propagation by infinitesimal dz, go to
position q+ dq. Now, dq on the screen is perpendicular to dz on the axis, and both form a right
triangle with ds, the optical distance (along which a wavefield would oscillate); this triangle is
similar to that formed by the quantity

p = n sin θ, (6)

which is the optical momentum on the screen; then, there is a quantity pz ≡ −h(q, p) that
turns out to be (minus) the geometric optical Hamiltonian; the hypotenuse of this triangle is
the refractive index n of the medium at q. This similarity leads to the Hamilton equations [4,
Ch. 2]. In the global régime of optics, where θ ∈ S1 (the circle), |p| ≤ n(q).

Indeed, the optical Hamiltonian is

h(q, p) = −
√
n(q)2 − p2 ≈ p2

2n(q)
− n(q) +

p4

8n(q)3
+

p6

16n(q)5
+ · · · (7)
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ds
dq

dz

n
p

pz

q q

Figure 2. The left triangle, formed by infinitesimal displacements in position on the screen dq
(in any number of dimensions) and evolution distance dz has for hypotenuse the optical distance
ds. This is similar to the triangle formed by optical momentum p, the (minus) Hamiltonian pz,
and the refractive index n at the point q.

The paraxial approximation consists in assuming that the angle θ is near to the optical axis,
so θ2 ≈ 0, and so momentum (6) becomes p = nθ while the Hamiltonian (7) looses all p-
terms beyond p2, and comes to resemble a mechanical system of variable mass [5]. But
then, the paraxial model assumes that, notwithstanding θ is small, the momentum p can be
extended to all of R together with all the simplified formalism of quadratic expressions when
also n(q) ≈ n0 − 1

2n2 q
2 for isotropic media and q2p2 ≈ 0; then the Hamiltonian (7) becomes

p2/2n0 − n0 + 1
2n2q

2. Note that the refractive index corresponds to the negative of a quantum

potential: n0 − 1
2n2q

2 ∼ −V (q), so rays ‘fall into’ regions of highest n, corresponding to the
potential minimum.

With what has been said we can now broach the purely geometric free displacement (or
propagation) by finite z or τ —indicate it by ζ—, generated by J+ ∼ 1

2p
2 and present it with

the 2× 2 matrices in (4), as

D(ζ) = exp(−ιζJ+) ↔ D(ζ) :

(
q
p

)
=

(
1 ζ
0 1

)(
q
p

)
=

(
q+ζp
p

)
, (8)

where ι is 1 or i as before. The classical map is linear; it skews the phase plane and obviously
conserves p = nθ, the direction of light propagation. We recall that to respect the order of
multiplication for group elements G and their matrix presentation M on phase space two-
vectors, the group elements act with the inverse matrix, G(M) ( qp) = M−1( qp); because only

then G(M1)G(M2) = G(M1M2).
The dynamical elements of the system are generated by J− ∼ 1

2q
2. In geometric optics it is

clear that the effect of a lens of power g will be

L(g) = exp(−ιgJ−) ↔ L(g) :

(
q
p

)
=

(
1 0
−g 1

)(
q
p

)
=

(
q

p− gq

)
. (9)

This is the lens transformation on classical phase space; when g > 0 the rays are refracted (i.e.,
broken) towards the optical axis, and a beam of rays parallel to this axis will all meet at the
focal distance f := 1/g of a convex lens; when g < 0, the lens is concave. In wave optics, L(g)
acts on wavefields multiplying them by the phase exp(−i12gq

2), as a flat Fresnel lens such as we
often see in pocket magnifying glasses. On the other hand, the quantum mechanical analogue
of the flat lens (8) is a potential jolt. As built in [1], the evolution in the presence of a potential
V (q)/κ during a time κ is produced by the operator exp[−iκ(−1

2∂
2
q + V (q)/κ)] acting on the

wavefunction. When κ → 0 the time window narrows and the potential strength increases, so
there remains the phase exp[−iV (q)]. For the harmonic oscillator this is V (q) = 1

2ωq
2, where

the oscillator strength is ω, which corresponds with the lens power g that we introduced above.
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The problem is thus set: to produce, with free displacements and lenses, all linear (and
canonical) transformations of phase space; correspondingly, with periods of free evolution
interspersed with harmonic oscillator jolts, to produce all linear (and unitary) maps of
wavefunctions in L2(R). Of particular interest is negative free evolution, and thus the unit
transformation that returns the beam or wavefunction to its original condition before it entered
the optical setup or other such apparatus. In view of (8) and (9), the classical problem reduces to
write any (and every) such transformation as a 2×2 matrix, and decompose this into products of
lower- and upper-triangular matrices. Perhaps this is an unusual factorization for Sp(2,R), which
is better known through its Iwasawa, Bargmann, or Euler-type angle and boost decompositions.

Let us compose a lens (or jolt) of strength g with a free space (or time) ζ; multiplying their
matrix representatives; this ‘elementary subsystem’ we denote by

M =

(
1 0
−g 1

)(
1 ζ
0 1

)
=

(
1 ζ
−g 1−gζ

)
. (10)

Two such arrangements in a row are represented by their product,

M2 =

(
1−gζ ζ(2−gζ)

−g(2−gζ) (1−gζ)2 − gζ

)
, (11)

where we note that if gζ = 2, the transformation becomes a rotation of phase space by π, namely(
−1
0

0
−1

)
. Three such elements, depicted in Fig. 3, produce

M3 =

(
(1− gζ)2 − gζ ζ(1−gζ)(3−gζ)
−g(1−gζ)(3−gζ) (1− gζ)3 − gζ(3− 2gζ)

)
. (12)

When gζ = 1 we obtain the π rotation
(
−1
0

0
−1

)
, while when gζ = 3 the result is

(
1
0

0
1

)
— the

identity matrix. This last ‘identity system’ was already recognized in [2, Eq. (3.25)] to yield an
output which is the input function with an overall minus sign.

ζ ζ ζ

3/ζ 3/ζ 3/ζ

Figure 3. In geometric optics, three lenses of power g = 3/ζ and three free flights by ζ yield
the identity transformation between ingoing and outgoing rays.

The above argument with matrices, which would appear to indeed simplify the Mielnik
hexagon into a triangle, underscores the fact that, because Sp(2,R) is multiply connected, the

geometric-optical realization of the symplectic identity group element
(
1
0

0
1

)
in (12), corresponds

to two group elements in its two-fold cover Mp(2,R). This holds in the same way that a rotation
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by 2π around any axis is the identity transformation in the three-dimensional rotation group
SO(3), but corresponds to two ‘rotations’, by 2π and by 4π, in its two-fold cover by the spin
group SU(2). In the next section we shall see that Sp(2,R), as the circle S1, is infinitely connected;
the metaplectic group Mp(2,R) is only its two-fold cover.

It is of interest to note, in the context of geometric optics, that the problem of realizing
any linear symplectic transformation in a (two-dimensional) paraxial optical setup composed by
lenses and free flights, i.e., the ‘optical’ decomposition of the three-dimensional Sp(2,R) manifold,
by means of upper- and lower-triangular 2× 2 matrices, was solved in Ref. [6]. It turns out that
two lenses and two free flights suffice to reach all such systems, except for a lower-dimensional
submanifold that includes negative free flight; so, three lenses and two free flights suffice. (See
also Ref. [4, Sec. 10.5].)

4. Symplectic and metaplectic units
The work of Valentin Bargmann on the symplectic groups, Ref. [7] for Sp(2,R) and Ref. [8] for
Sp(2N ,R), is as comprehensive as can be found. He uses the analogue of the characterization of
complex numbers by phase and modulus, z = ei arg z |z| ∈ C, which for matrices is their polar
decomposition into the product of a unitary and a symmetric positive definite matrix. In the
2× 2 case this is (

a b
c d

)
=

(
cosφ − sinφ
sinφ cosφ

)(
λ+ Reµ Imµ

Imµ λ− Reµ

)
, (13)

where ad− bc = 1, and its Bargmann parameters are

φ = arg [a+ d− i(b− c)] ∈ R, (14)

µ = 1
2 e−iφ[a− d+ i(b+ c)] ∈ C, (15)

with λ := +
√
|µ|2 + 1 > |µ|. Note that, as in the complex number case, the ‘angle’ φ is now

allowed to take values beyond the basic angular interval.
In terms of the Bargmann parameters, the product of two matrices M = M1M2 is found to

be

φ =φ1 + φ2 + arg ν, (16)

where ν :=1 + e−2iφ2 µ1µ
∗
2/λ1λ2, (17)

µ = e−i arg ν(λ1µ2 + e−2iφ2 µ1λ2). (18)

It is crucial to realize that |ν − 1| < 1, so arg ν ∈ (−1
2π,

1
2π), which implies that (16) uniquely

defines the ‘phase’ φ beyond the basic angular interval, and thus parametrizes the universal
covering group Sp(2,R). The manifold of the symplectic group Sp(2,R) is the exterior of a one-
sheeted hyperboloid, where φ can effect any number of turns around its waist; see for example
Ref. [4, Sect. 9.4]. In the metaplectic group Mp(2,R), φ is counted modulo 4π.

In (10)–(12) we drew attention to three cases: gζ = 1, 2, and 3, which resulted in diagonal

matrices, either
(
−1
0

0
−1

)
or
(
1
0

0
1

)
—which do not depend on g or ζ separately. With (14)–(15)

and the products (16)–(18) we can know whether these form the ‘first’ or the ‘second’ metaplectic
(and true) unit. For reference, we annotate that in the three cases of gζ, the matrices M in (10)
correspond to the following Bargmann parameters for ζ = 1:

gζ = 1 : M1 :=
(

1
−1

1
0

)
φ = −1.10715, µ = 0.223607 + 0.447214 i,

gζ = 2 : M2 :=
(

1
−2

1
−1

)
φ = −1

2π, µ = 1
2 + i,

gζ = 3 : M3 :=
(

1
−3

1
−2

)
φ = −1.81577, µ = 0.606339 + 1.697750 i.

(19)
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Values of ζ close to 1 lead to values of φ, µ that are close to those listed above but, as we said,
we are only interested in the cases when the powers of (19) are diagonal matrices, 1 or −1,
independent of ζ and g separately.

Since the hand computation of products in terms of Bargmann parameters is rather arduous,
we resorted to symbolic and numeric computation with wolfram mathematica which, after
thorough checking, yielded the following parameter values for their powers:

gζ = 1 : M3
1 = −1, φ = −π, µ = 0,

M6
1 = +1, φ = −2π, µ = 0;

gζ = 2 : M2
2 = −1, φ = −π, µ = 0,

M4
2 = +1, φ = −2π, µ = 0,

M6
2 = −1, φ = −3π, µ = 0;

gζ = 3 : M3
3 = +1, φ = −2π, µ = 0,

M6
3 = +1, φ = −4π, µ = 0.

(20)

From here we can conclude that the symplectic unit can be realized with the three-lens setup
M3

3 shown in Fig. 3 as a minimal arrangement (see Ref. [4, Subsec. 10.5.4]), but also by means
of a M4

2 four-lens arrangement with gζ = 2, or with six lenses where gζ = 1, as shown in Figs. 1
and 4. The metaplectic unit appears when we double the setups, and thus appears only in M6

3,
with g = 3/ζ.

Figure 4. Six lenses of power g = 1/ζ and six free flights by ζ yield the symplectic identity
transformation between ingoing and outgoing rays. The metaplectic identity is obtained by
concatenating two symplectic identities each realized by the setup in the preceding Fig. 3.

5. Conclusions
When Moshinsky and Quesne defined linear canonical transforms [9] as a representation of the
group of symplectic transforms that preserve the Heisenberg-Weyl algebra generated by the
quantum operators Q̂, P̂ and 1̂, realized on the space L2(R) of quantum wavefunctions ψ(q),
they wrote it as an integral transform kernel [10, Ch. 9],

C
(a
c

b
d
)
(q, q′) =

e−iπ/4√
2πb

exp
(

i
aq′2 − 2q′q + dq2

2b

)
, (21)

where ad − bc = 1. The square root of b in the denominator already announces a double
valuation. The product of two transformations was investigated in that same article, leading
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to a sign that depends on the b-elements of the two factors and the product matrices. The
symplectic unit would multiply ψ(q) by a minus sign while the metaplectic unit would be the
true unit transform.

Although we have often written the metaplectic product law using the Bargmann
parameters (13) in symbolic form, I cannot recall any paper where they have been explicitly
computed for a given optical or quantum setup. In performing the exercise of analyzing the
three- and six-lens optical systems in Figs. 3 and 4, as well as the product of any number of
optical elements, we can also describe their quantum counterpart systems.

In the Introduction we stated that optical models are richer than quantum-mechanical ones.
This is true in the metaxial (i.e., beyond the paraxial) régime because of the aberrations due
to the non-flat nature of lenses, and because now the momentum (6) is no longer p = nθ, so
that now q 7→ q + zn sin θ, and the terms ∼ pr+1 in (7) represent rth order aberrations, for
r ∈ {3, 5, 7, . . .}. As Figs. 3 and 4 suggest, as we move the screen along the z-axis, a non-flat
convex lens represents a potential jolt along the two endpoints of a segment (the border of a
disk in two-dimensional screens) that grows along the z (or τ) axis from zero to the size of the
lens, and then decreases to a point and vanishes.

Generally metaxial systems require functions puqv, with u, v integers and u + v > 2, and
their corresponding Poisson or quantum operators, the latter following the Weyl correspondence
rule to ensure hermiticity. The groups built in this way are Ar /Sp(2,R), where Ar is the normal
subgroup of rth order aberrations, generated by all monomials puqv with 2 < u + v ≤ r, plus
the assumption that puqv ≈ 0 for u+ v > r [4, Part 4]. In this régime the primary interest is to
minimize the aberrations through the best choice of the surface shape [11] and of the refractive
index profile n(q). If we only have constructible physical lenses and free flights, it is unclear that
these optical transformations can be bent back to unity, and it is most likely that they may not.
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