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Abstract. In the separation of rotations from internal motions in the n-body problem, there
appear some gauge fields which physically represent Coriolis effects. These fields are also present
in the “falling cat” problem: at the kinematical level they map changes in the cat’s shape to
changes in its orientation whereas at the dynamical level they show up as gauge potentials
in the Hamiltonian. Classically, the vanishing angular momentum condition allows for the
orientation degrees of freedom to decouple from the internal ones and the cat’s re-orientation
can be accounted for at the kinematical level, partially. In the quantum case the cat’s re-
orientation description requires to be done on dynamical grounds. In this paper we explore the
quantum version of the falling cat modelled as a three body problem.

1. Introduction
As it is familiar to almost everyone from everyday life experience, a free falling cat lands on
its feet more often than not, regardless of its initial orientation and in spite of the fact that it
might have zero angular momentum and nothing to push against. This phenomenon is counter-
intuitive as it may seem to violate conservation of angular momentum, however, as it turns
out cats can change their orientation by changing its shape precisely because of conservation of
angular momentum [1–3]. In the description of the cat’s reorientation, it is particularly useful
the use of geometrical methods applied to the n-body problem [4].

Now, let us imagine that our cat is somehow “promoted” to a quantum cat (i.e., a cat
following the laws of quantum mechanics) and that it is freely released at a given height. At
this point the cat may understandably feel quite uneasy and it may feel the need to consult an
expert on quantum control, say professor Bogdan Mielnik [5–8]. Can the quantum cat control
its muscles so that it lands on its feet as its classical analogue?

In this work we focus on the analysis of the above question in terms of geometrical methods.
The structure of the paper is as follows: in Section 2 we introduce notation and discuss the
general case of n-body problem in terms of geometric language, which follows closely Ref. [9], in
Section 3 we present the main results of our work through the simplified case of a body composed
only of three point-like masses. We give a brief conclusion in Section 4.

2. A cat as an n-body
Let us assume the cat is described by an isolated deformable body modelled by a system of
n point-like particles interacting only between themselves through a potential V . Clearly, the
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body’s configuration space is Ctot = R3n. If rs,α ∈ R3 represents the components of α-th particle’s
position vector with respect to an inertial or space frame (indicated by the s sub-index) and mα

its mass (α = 1, 2, . . . , n), then the Lagrangian of the system is given by:

Ltot =
1

2

n∑
α=1

mα|ṙsα|2 − V (rs,1, . . . , rs,n), (1)

where “ ˙ ” = d/dt. Since there are not external forces acting on the system, it is convenient
to eliminate the translational degrees of freedom by introducing relative coordinates, e.g., the
mass-weighted Jacobi coordinates ρsα, α = 1, . . . , n − 1. In this way, the Lagrangian can be
written as Ltot = LCM + L, with LCM = M |Ṙs|2/2 and L given by:

L =
1

2

n−1∑
α=1

|ρ̇sα|2 − V (ρs,1, . . . ,ρs,n−1). (2)

Likewise, in these coordinates it is clear that the total configuration space can be written
as Ctot = R3 × C, where C = R3n−3 is the translation-reduced configuration space upon
which (ρs,1, . . . ,ρs,n−1) are coordinates. Since the dynamics of the center of mass is trivial,
without loss of generality we can assume that Rs = 0 for the rest of the paper and refer
to C simply as the configuration space. A point in C is defined by an n-body’s shape and
an orientation. There are 3n − 6 coordinates needed to specify the body’s shape qµ, which
correspond to independent functions on configuration space invariant under proper rotations,
i.e., qµ(ρs,1, . . . ,ρs,n−1) = qµ(Qρs,1, . . . ,Qρs,n−1) for all Q ∈ SO(3). The body’s orientation, on
the other hand, is defined by a) a convention of body frame given by the relations

ρα = ρα(qµ), α = 1, . . . , n− 1, (3)

and b) the orientation coordinates in SO(3) defining a rotation R(θi) that maps the body frame
into the space frame. In the above relations we introduce the convention that a vector appearing
without sub-index s is referred to the body frame. The convention of body frame is a choice of
gauge, it consists of specifying the reference orientation in which both, the body and the space
frames coincide, and it is defined by smoothly (and otherwise arbitrarily) attaching a frame
to the body for each shape. For the non-collinear configurations considered in this work, this
separation between rotations and internal motions allows us to regard C as an SO(3) principal
fibre bundle, where the base space is the “shape space” SS = R3n−3/SO(3) and the fibre is
isomorphic to SO(3). In this geometric language the choice of gauge (3) defines a section S,
i.e., a transversal embedding of shape space in the configuration space C.

In terms of these shape and orientation coordinates, a point in C is defined according to:

ρs,α = R(θi)ρα(qµ), α = 1, . . . , n− 1. (4)

The above relation expresses the fact that given a shape of the body qµ and a reference orientation
ρα(qµ), any configuration of the system can be reached through a rotation R(θi). Similarly a
velocity vector on the configuration’s tangent space can be expressed in the angular velocity and
shape anoholonomic basis as va = (ω, q̇µ), where ωi = −εijk(RT · Ṙ)jk/2 is the i-th component
of angular velocity of the body frame w.r.t. the space frame, referred to the body frame as
indicated by the absence of subscript s. In the previous expression and in what follows we
assume Einstein summation convention for repeated indices. Accordingly, the Lagrangian (2)
can be recast as:

L =
1

2
Gabv

avb − V (q), (5)
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where

Gab =

(
M MAν

AT
νM gµν + Aµ ·M ·Aν

)
, (6)

is the metric in configuration space C and

M =
n−1∑
α=1

ρα ⊗ ρα − |ρα|2 I, (7)

Aµ = M−1
n−1∑
α=1

ρα ×
∂ρα
∂qµ

, (8)

gµν =

n−1∑
α=1

∂ρα
∂qµ
× ∂ρα
∂qν
−Aµ ·M ·Aν , (9)

are the inertia tensor, the Coriolis gauge potential and the metric on shape space, respectively.
A velocity vector of the form va = (ω, 0) is purely rotational or vertical since q̇µ = 0 and

thus the body’s shape is not changing. A priori there is not a canonical way to define a purely
internal velocity vector, because the condition ω = 0 is not gauge independent and therefore
it cannot be physically meaningful. However, we can define a vector to be purely internal or
horizontal if it is orthogonal to all vertical vectors w.r.t. the metric Gab introduced in (6). As
it turns out, a vector is horizontal iff its associated angular momentum vanishes. In terms of
shape and orientation coordinates, the angular momentum (referred to the body frame) can be
written as:

L = M · (ω + Aµq̇
µ), (10)

and thus, a vector is horizontal if ωdt = −Aµdq
µ. In this manner it can be observed that the

gauge potential Aµ maps infinitesimal changes in shape space to infinitesimal rotations under
the condition of vanishing angular momentum. When the body undergoes a finite deformation
qµ(t) subjected to the condition L = 0, the previous relation can be integrated such that the
body and the space frames are related through the rotation:

R(t) = R0P exp

(
−
∫ q(t)

q0

Aµdq
µ

)
, (11)

where R0 is a rotation relating both frames at t = 0, P exp is the path-ordered exponential
and the antisymmetric matrix Aµ is associated with the gauge potential according to (Aµ)ij =
−εijkAkµ. Of course, in general this rotation is gauge-dependent and not meaningful from the
physical viewpoint, nevertheless for closed paths – i.e., for cyclic deformations of the body’s
shape – it actually describes a change of the body’s orientation. In fact, just as in any Yang-
Mills gauge theory, it is possible to define an associated curvature form or Coriolis tensor

Bµν = ∂µAν − ∂νAµ −Aµ ×Aν , (12)

such that a cyclic deformation in shape space under conditions of vanishing angular momentum,
represented by the infinitesimal parallelogram spanned by the vectors yµ and zµ, produces the
gauge-invariant infinitesimal rotation ωdt = −Bµνy

µzν . We then notice that in order to get a
non trivial rotation, we need both the enclosed area by the body’s deformation path in shape
space and the curvature tensor to be different from zero.

The dynamics of the system can also be described by means of the gauge-covariant
Hamiltonian:

H =
1

2
L ·M · L +

1

2
(pµ −Aµ · L)gµν(pν −Aν · L) + V (q), (13)

Mielnik50 IOP Publishing
Journal of Physics: Conference Series 624 (2015) 012007 doi:10.1088/1742-6596/624/1/012007

3



where pµ = gµν q̇
ν + Aµ · L is the momentum conjugate to shape coordinate qµ. The first and

second terms in previous expression correspond to the vertical and horizontal contributions to
the kinetic energy, respectively. From the Hamiltonian (13) we immediately note that if L = 0,
then the shape and orientation degrees of freedom decouple and we can independently solve for
qµ = qµ(t) and then plug it into expression (11) to obtain the orientation trajectory in SO(3).
Alternatively, one could assume that the body deformation is controlled externally so that by
conveniently tailoring a cyclic path qµ(t) in shape space, the body would get rotated by (11) as
desired. Even though the latter scenario may be interesting for applications in quantum control
theory, the system in that case is not longer isolated as we initially assumed.

Clearly the condition L = 0 can be imposed in the classical context in a straightforward
way, but in the quantum realm such a condition is too restrictive since it would imply that
the system’s state is the l = 0 angular momentum’s eigenstate, in which the dispersion of the
orientation angle operators is infinite. Thus, a more sensible condition in the quantum regime
would be that the expectation value of L vanished. Therefore, if we are interested in describing
a net rotation of a quantum deformable body produced by a cyclic change of its shape, we need
to find the eigenvectors of the corresponding Hamiltonian operator at some point, but since M,
Aµ and gµν are operators themselves, the problem may be quite difficult. Indeed, since (13)
commutes with L2 and Lsz, we know that its eigenfunctions are also eigenfunctions of L2 and
Lsz with eigenvalues l and m, i.e.:

ψlm(R, qµ) =
l∑

k=−l
χlk(q)D

l
mk(R)∗, (14)

where Dl
km(R) are the Wigner functions corresponding to the (2l + 1) × (2l + 1) irreducible

matrix representation of R ∈ SO(3), and χlk(q) is the gauge-dependent wavefuntion in the
section S. The previous expression tells us that for eigenstates of the system, its wavefunction
for any orientation R can be obtained from the wavefunction in the section χlk(q

µ) through a
rotation, and then in some sense it is the quantum version of relation (3). In this way, to solve
the eigenvalue problem accounts to diagonalize an (2l + 1) × (2l + 1) matrix of operators in
shape space, which is rather complicated in general. To simplify things a bit, we will consider
quasi-rigid deformable bodies.

Let us now assume that the body consists of a system of n coupled harmonic oscillators and
let us restrict ourselves to the analysis of small vibrations around a non-collinear equilibrium
configuration qµ0 , so that qµ = qµ0 + λxµ, where λ is a small ordering parameter representing
the ratio of deformation length scale to the equilibrium configuration length scale. We further
choose xµ to be both Riemann normal coordinates and normal modes of the potential, so that
the potential can be written as V (x) = ω2

(µ)x
µxµ/λ

2, where we have implicitly assumed that

∂2
µV = ω2

(µ)/λ
4. On the other hand, to further simplify things we use Poincaré gauge, Aµx

µ = 0,

that is, in this gauge it holds Aµ(0) = 0. As it has been previously showed by Littlejhon and
Mitchell [10], Poincaré gauge can be geometrically interpreted as choosing the gauge so that the
section is the horizontal lift of radial lines emerging from the equilibrium configuration, which
of course depends on the coordinates used in shape space. If Riemann coordinates are chosen,
then the section is flat and it coincides with the Eckart frame. Finally, we scale pµ → pµ/λ,
H → λ2H, M → λ2M, Aµ → λAµ and L → L, and write Rµαβν in terms of M and Bµν

1, so
that the Hamiltonian (13) up to O(λ2) can be expanded as

H =
1

2

(
pµpµ + ω2

(µ)x
µxµ

)
+

1

2
λ2(L− S) ·M−1 · (L− S), (15)

1 Namely, 2Rµνστ = Bµν ·M ·Bστ + Bµ[τ ·M ·Bσ]ν cf. relation (5.61) from [9].
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where M−1 in the above expression is evaluated at qµ0 and we have introduced the “internal
angular momentum” S and “shape angular momentum” S:

S =
1

4
M ·BµνS

µν , Sµν = xµpν − xνpµ. (16)

The only term in the Hamiltonian (15) that couples the shape and orientation degrees of freedom
is the crossed one, which is of the form L ·M−1 ·S, and since L is the generator of rotations, when
acting on the orientation sector of the wavefunction, it can be interpreted as an infinitesimal

rotation about the unit vector M̂−1 · S by an angle |M−1 ·S|, which are both operators in shape
space. At this point we are ready to show that a change of its shape induces a rotation of a
body as the dynamical process generated by the Hamiltonian (15).

3. Three-body case
As it turns out, to “see” the cat rotating while it changes its shape, it is enough to model it as
a three-body problem. In this case the shape space has dimension 3n− 6 = 3 and we can define
n− 1 = 2 Jacobi vectors as:

ρs1 =
√
µ1 (rs1 − rs3) , (17)

ρs2 =
√
µ2 (rs2 −Rs,13) , (18)

where µ1 = m1m3/m13, µ2 = m2m13/M and Rs,13 is the center of mass of subsystem
m13 = (m1 +m3). A convenient set of coordinates in shape space is:

q1 = |ρs1|2 − |ρs2|2,
q2 = 2ρs1 · ρs2,
q3 = 2|ρs1 × ρs2| ≥ 0,

(19)

which makes it clear that the shape space is one half of R3. The q3 coordinate measures the area
of the body, and the plane q3 = 0 then corresponds to collinear shapes (which have zero area)
while the q3 axis contains symmetric shapes, i.e., the shapes whose inertia tensor is degenerate
in the body xy plane.

For the sake of concreteness, let us adopt now the north regular gauge [9, 11] which is also
an Eckart (and Poincaré) gauge for the equilibrium shape qµ0 = (0, 0, 1), which corresponds
to the configuration given by one mass located at each vertex of an equilateral triangle with
edges of unit length. If, moreover, we consider small oscillations around equilibrium qµ0 , i.e.,
qµ = qµ0 + λxµ, such that xµ are Riemann and normal modes of the potential, then we can
apply the the quasi-rigid bodies results obtained in the previous Section 2. Normal modes xµ

are related to the coordinates qµ as defined in (19) according to:

q1 = −λ(x1 +
√

2x2),

q2 = −λ(x2 −
√

2x1),

q3 = (1− 2λx3),

(20)

where x3 corresponds to the breathing mode of higher frequency ω3 =
√

2 (in natural units),
while x1 and x2 are degenerate orthogonal modes of frequency ω1 = ω2 = 1.

The moment of inertia tensor for the equilibrium configuration is

Mij =

1/2 0 0
0 1/2 0
0 0 1

 , (21)
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the only non trivial component of Coriolis tensor is B12 = 2ẑ and therefore the “internal angular
momentum” reduces to S = S12ẑ, where S12 = x1p2 − x2p1 is the angular momentum in the
plane x1x2 of shape space. That is, the fibre bundle in this case is curved only on the plane
x1x2, which from the physical point of view can be understood because only an out-of-phase
combined excitation of modes x1 and x2 can generate internal angular momentum.

Then, the Hamitonian takes the form:

H =
1

2

(
p2

1 + p2
2 + x2

1 + x2
2

)
+

1

2

(
p2

3 + 2x2
3

)
+ λ2

(
L2 − 1

2
L2
z − LzS12 +

1

2
S2

12

)
. (22)

As claimed, in the classical case the condition of vanishing angular momentum makes it possible
to find the solutions of the equations of motion for shape coordinates independently of the
orientation ones. From the previous Hamiltonian (22), it can be realized that Ṡ12 = 0 and so
S12 is a constant of motion. In this case xµ = xµ(t) correspond to harmonic oscillations to
leading order in λ:

xµ(t) = xµ0 cosωµt+
pµ0
ωµ

sinωµt, (23)

with frequency ωµ = (1, 1,
√

2) and pµ(t) = ẋµ(t). Since S12 is a constant of motion and the
gauge field Aµ is pseudo Abelian in this case, relation (11) yields:

Rij(t) =

 cos
(
λ2S12t

)
sin
(
λ2S12t

)
0

− sin
(
λ2S12t

)
cos
(
λ2S12t

)
0

0 0 1

 , (24)

which represents a rotation about ẑ by an angle α(t) = −λ2S12t, such that a cyclic change of
shape (23) with x3(0) = 0 = p3(0) gives rise to α(2π) = −2πλ2S12. In Fig. 1 we show the
cyclic deformation sequence that produces the rotation (24), with S12(0) = 2 for three periods
0 ≤ t ≤ 3T = 3(2π/ω1). Clearly, if initial conditions are chosen such that S12(0)’s sign is
opposite, then the angle’s sign of the resulting rotation is also opposite.

Coming back to the quantum case, it is convenient to define the annihilation and creation

operators in shape space as usual aµ = (xµ + ipµ)/
√

2 and a†µ (along this work we will work in
units such that ~ = 1), and analogously the annihilation and creation operators associated with

angular excitations in the x1x2 plane as a± = (a1 ∓ ia2) /
√

2 and a†± = (a†1 ± ia
†
2)/
√

2, where

a+(a†+) annihilates (creates) one positive angular excitation and a−(a†−) annihilates (creates) one

negative angular excitation [13]. We also define the corresponding number operators Nµ = a†µaµ
and N± = a†±a±, so that the Hamiltonian (22) can be written as:

H = (N + 1) + ω3

(
N3 +

1

2

)
+ λ2

(
L2 − L2

z

2
− LzS +

S2

2

)
, (25)

with N = N+ + N− and S = N+ − N−. The previous Hamiltonian2 is defined in the
Hilbert space L2(C, d3q dR), with dR being the Haar normalized measure in SO(3). It is
not difficult to see that a complete set of mutually compatible operators commuting with the
Hamiltonian is {N,S,N3,L

2, Lz, Lsz}, see [14], and then it is clear that Hamiltonian eigenstates
|n, s, n3, l,m, k〉 are labelled by the corresponding quantum numbers n3, n, l ∈ {0, 1, 2, . . .},
m, k = −l,−l + 1, . . . , l − 1, l and s = −n,−n + 2, . . . , n − 2, n. Now, the vanishing angular
momentum condition implies that the state of the system has to be such that l = 0 and thus

2 We should include the geometric potential V2 = D−1/4∂µ(gµν∂νD
1/4)/2 with D = det (M) det (gµν) in the

quantum Hamiltonian, however in the small oscillations regime it reduces to a constant that we neglect.
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Figure 1. Sequence of the orientation change produced by a cyclic deformation in the plane
x1x2 in shape space, for the three body problem. The figure at the top represents SO(3)
as the 3-ball of radius π with identified antipodes at the boundary S2(π), any point in this
space corresponds to a rotation in the axis-angle representation, the vector joining the point to
the origin corresponds to the axis of rotation while its magnitude corresponds to the angle of
rotation. We present different configurations for the different values of time t = 2πn/4, with
n = 0, 1, 2, 3, . . . , 12, S12(0) = 2 and λ = 0.2: at the top we show the (red) dot that represents
the orientation configuration in the fibre SO(3) and at the bottom the corresponding body’s
shape (for illustrative purposes the body’s deformation was magnified by a factor of four).

m = 0, but since the term in the Hamiltonian that produces the rotation is L·M−1 ·S = −λ2LzS,
then when acting on a state satisfying the condition the only rotation it can generate is the
identity. In order to see a more general rotation we shall impose the weak vanishing angular
momentum condition 〈L〉 = 0.

Figure 2. Sequence of the orientation change produced by a cyclic deformation in the plane
x1x2 in shape space for the three body problem, in the quantum regime. The figure at the
top represents SO(3) as in Fig. 1. We present the time-evolution of the probability density
associated with the initial wavefunction Ψ(R, qµ) given by (26) for the different values of time
t = 2πn/4, with n = 0, 1, 2, 3, . . . , 12, λ = 0.2 and α(+,−) = (

√
2, 0). At the top we show

the surface of constant (in orientation coordinates) orientation reduced probability density
POt (R) = .99 max (POt ) that represents the orientation configuration in the fibre SO(3) and
at the bottom the reduced probability in the shape space PSt (x1, x2).

Let us thus consider a more general state |Ψ〉 satisfying the weak angular momentum condition

Mielnik50 IOP Publishing
Journal of Physics: Conference Series 624 (2015) 012007 doi:10.1088/1742-6596/624/1/012007

7



〈Ψ|L|Ψ〉 = 0, with Ψ given by:

Ψ(R, qµ) =
1√
π
ψα+,α−(x1, x2)ψ0(x3)Φ(φ), (26)

where ψα+,α−(x1, x2) =
∏2
i=1 e−

1
2

(xi−〈xi〉)2 ei〈pi〉(xi−
1
2
〈xi〉) is a coherent state with 〈xi〉 =√

2 Re(αi) and 〈pi〉 =
√

2 Im(αi) as usual, with α1 = (α+ + α−)/
√

2 and α2 = i(α+ − α−)/
√

2
for α± ∈ C, ψ0(x3) is the breathing mode’s ground state, and Φ(φ) = Φ(Rn̂(φ)) = NΦ ecosφ/2

is a wavefunction in SO(3) in the axis-angle representation (n̂, φ). The state Φ(φ) describes a
system that is most probably oriented in coincidence with the body frame.

Figure 3. Sequence of the orientation change produced by a cyclic deformation in the plane
x1x2 in the shape space for the three body problem, in the quantum regime. The figure
at the top represents SO(3) as in Fig. 1. We present the time-evolution of the probability
density associated with the initial wavefunction Ψ(R, qµ) given by (26) for the different values
of time t = 2πn/4, with n = 0, 1, 2, 3, . . . , 20, λ = 0.2 and α(+,−) = (

√
2,−
√

2). At the top we
show the surface of constant (in orientation coordinates) orientation reduced probability density
POt (R) = .99 max (POt ) that represents the orientation configuration in the fibre SO(3) and at
the bottom the reduced probability in the shape space PSt (x1, x2).

The time evolution of the wavefunction (26) can be computed directly, though no completely
trivially. The Hamiltonian (15) can be separated into three terms, HS = (N + 1) + ω3(N3 + 1/2)
+λ2S2/2 that only depends and acts on the shape degrees of freedom, HO = λ2(L2 − L2

z/2)
that is basically the kinetic energy of the rotor, and HI = −λ2LzS that couples R and qµ. All
three terms commute with each other, and thus the complete time evolution can be decomposed
into the action of the three corresponding unitary transformations. The first and the second
evolve the shape and orientation sectors of the wavefunction, respectively and in an independent
way. The action of e−iλ

2HOt can be computed by expanding the function Φ(φ) in the HO’s
eigenvectors {Dl

km}, while that of e−iHSt can be expressed in two steps: one corresponding to
the λ-independent term which just shifts the coherent state label to α±(t) = α± e−it, and one
associated with the λ-dependent term of HS which does not give rise to a coherent state, but
can be approximated by e−iλ

2S2t/2 ≈ 1− iλ2S2t/2, since λ2〈S2〉T/2 is small. The third coupling
term on the other hand is the most interesting one, when it is applied to the wavefunction it
produces a coherent state labelled by αk±(t) = α±(t) e±iλ

2kt, where k is the eigenvalue of Lz, i.e.,

Ψt(R, q
µ) ≈ 1√

π
e−i

ω3t
2 ψ0(x3)

∑
l,k

clkϕ
k
t (x1, x2) e

−iλ2
(
l(l+1)− k

2

2

)
t
Dl
kk(R), (27)

where ϕkt (x1, x2) = (1 − iλ2S2t/2)ψαk+(t),αk−(t)(x1, x2) and clk,m =
∫
Dl ∗
k,m(R)Φ(R)dR = clkδkm

which turns out to vanish for m 6= k. To illustrate the system’s change in orientation as its
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shape changes due to time evolution, we project the probability density Pt(R, q
µ) = |Ψ(R, qµ)|2

onto the section S and onto the fibre SO(3), and thus we define the reduced probability density
in shape space by integrating out the orientation degrees of freedom, PSt (qµ) =

∫
Pt(R, q

µ)dR
and the orientation reduced probability density POt (R) =

∫
Pt(R, q

µ)
√
gd3n−6q. In Fig. 2 we

show the quantum version of the cyclic deformation and the corresponding rotation sequence
that is produced by the Hamiltonian as time increases with α(+,−) = (

√
2, 0), which implies that

〈S〉 = 2, just as in the classical situation shown in Fig. 1. It can be noted that the system
rotates clockwise as its shape changes in a similar fashion than its classical counterpart, however
the angle of the rotation after three complete periods in SS seems to be slightly smaller than
in the classical case. We can notice as well that the surface of most probable orientation in this
case corresponds to an sphere whose radius grows as time increases. Both effects are related to
the dispersion of the wavefunction in orientation space. And also just as in the classical case we
could choose (26) such that α(+,−) = (0,

√
2), so that 〈S〉 = −2 and thus the body would rotate

counter clockwise. Furthermore, we could also fix as our initial state a wavefunction like (26)
with α(+,−) = (

√
2,
√

2) or equivalently with α(1,2) = (2, 0) which corresponds to a coherent state
associated with a linear excitation along x1 and therefore 〈S〉 = 0. In contrast to the classical
case, this system’s state can produce a non vanishing probability of changing its orientation in
spite of enclosing a null area, see Fig. 3. The cigar-shaped probability distribution shown in the
latter figure describes a cat whose orientation is rotated, with respect to the initial one, by all
angles (approximately) within the interval [−π/2, π/2] about the z-axis with equal probability.
So that if the cat is initially oriented, say horizontally, it would end landing on any part of its
body located between its feet and its head, continuously and with equal probability, becoming
a “continuous Schrödinger cat”.

4. Conclusions
We presented a quantum description of the free-falling cat problem in terms of geometrical
methods applied to the n-body problem. In concrete, we answered affirmatively to our initial
motivating question: can the quantum cat control its muscles so that it lands on its feet as
its classical analogue? The specific scenario which more closely resembles the corresponding
classical analogue takes place when the cat’s wavefunction is a coherent state in both, the shape
and orientation sectors; furthermore, we showed that more exotic purely quantum scenarios may
happen, including one describing a “continuous Schrödinger cat”. This result might remind
us that applying quantum mechanics without inquiring on its interpretation and foundations
may have dangerous, even fatal, consequences, a message that is commonly found in professor
Mielnik’s work.
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