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Abstract. The time-evolution of the quantum correlations between two qubits that are
coupled to a pair of photon baths is studied. We show that conditioned transitions occurring
in the entire system have influence on the time-evolution of the subsystems. Then, we show
that the study of the population inversion of each of the qubits is a measure of the correlations
between them that is in agreement with the notion of concurrence.

1. Introduction
Coherent superpositions in quantum mechanics give rise to correlations between the parts of a
given system [1,2]. Such correlations can be classic or quantum, and both of them may coexist for
a given system [3]. Entanglement was proposed as a manifestation of quantum correlations [2],
though not all quantum correlations are associated to entanglement since separable states can
be quantum correlated [4, 5] (see also [6, 7]). Diverse measures of entanglement have been
introduced over the time, examples are the concurrence [8, 9] and the negativity [10]. More
general measures, as the quantum discord [11–13], quantify quantum correlations without the
requirement of entanglement.

In this contribution we analyze the time-evolution of the correlation between two qubits that
are coupled to two independent photon baths. It is assumed that the systems qubit+bath are one
isolated from the other; that is, they are in cavities for which no communication is allowed. In
this form, each qubit interacts with its environment (the photon bath) and decoherence results.
The initial correlation between the qubits is then lost and recovered in time by time because
the entire system is closed. We investigate the coherences of the entire system (two qubits, two
photon baths) that are missed when information of one of its subsystems (the qubits) is required
by summing up (partial tracing) over the degrees of freedom of the other parts (the photon
baths). Such coherences include information of conditioned transitions between the states of
the entire system that is lost, in a first sight, as a consequence of looking at the subsystems.
However, this information can be recovered by analyzing the state of the parts in proper form.
Indeed, we shall show that the study of the population inversion of the qubits represents a
measure of quantum correlations that is in agreement with the concept of concurrence.

In Section 2 we introduce notation and general properties of a bipartite system formed of two
qubits. We show that the partial trace of the density matrix produces leaky information about
the transitions between the states of the subsystems. The notion of concurrence is recovered
from basic properties of the reduced matrices. In Section 3 we analyze the time-evolution of
the qubit bipartite system when it is coupled to photon baths and discuss about the behavior
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of the correlations with time. We show that the population inversions and the concurrence lead
to the same information about the correlation that the qubits present at a given time. Some
concluding remarks are given at the very end of the paper.

2. Qubit bipartite systems
Consider a system S formed of two qubits S`, ` = A,B, in two separated (and isolated) cavities.
Let us represent each qubit as a two level system with ground and excited states, |−〉 and |+〉
respectively, separated by an energy difference ∆E = ~ωq. Using the simplest representation of
the vector state basis

|+〉 =

(
1
0

)
, |−〉 =

(
0
1

)
, (1)

we can write the creation and annihilation operators for the qubit excitation as follows:

σ+ = |+〉〈−| ≡ X+− =

(
0 1
0 0

)
, σ− = |−〉〈+| ≡ X−+ =

(
0 0
1 0

)
. (2)

The dyads X+− and X−+ are two of the four Hubbard operators associated to the qubit vector
spaces [14], and (2) is called the X-representation of the operators σ+ and σ−. These last,
together with the Pauli operator

σ3 = [σ+, σ−] ≡ X++ −X−− =

(
1 0
0 −1

)
, (3)

are the generators of the su(2) Lie algebra. Notice that the basis elements (1) are eigenvectors
of this last operator σ3|±〉 = ±|±〉. As the state space for each qubit is two-dimensional

H` = Span{|+〉, |−〉}, ` = A,B, (4)

the state space of the qubit bipartite system is four-dimensional

H = Span{|+〉 ⊗ |+〉, |+〉 ⊗ |−〉, |−〉 ⊗ |+〉, |−〉 ⊗ |−〉}. (5)

In (5) the left (right) element in each tensor product refers to the qubit A (B). Besides this last
representation we shall use the following simplified notation

|+〉 ⊗ |+〉 = |+ +〉 = |ϕ1〉, |+〉 ⊗ |−〉 = |+−〉 = |ϕ2〉,
(6)

|−〉 ⊗ |+〉 = | −+〉 = |ϕ3〉, |−〉 ⊗ |−〉 = | − −〉 = |ϕ4〉.

Any state of the bipartite system S can be represented by a density operator of the form

ρ =
4∑

i,j=1

rijX
ij ; rij ∈ C, Xij = |ϕi〉〈ϕj |, (7)

where the (sixteen) dyads Xij are the Hubbard operators associated to the four-dimensional
space (5). The matrix elements rij are defined according to the specific state ρ of the system S
and satisfy the following equations

4∑
k=1

rkk = 1, rkj = r̄kj ∈ C, rkk ∈ R,

0 ≤
4∑

k=1

r2kk + 2(|r12|2 + |r13|2 + |r14|2 + |r23|2 + |r24|2 + |r34|2) ≤ 1,

(8)
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with z the complex conjugate of z ∈ C. The diagonal elements rkk are the (populations)
probabilities of finding the system S in the state |ϕk〉. In turn, the off-diagonal elements
rk,j 6=k are associated to the coherence between different states. That is, rk,j 6=k and its complex
conjugate rk,j 6=k are the probability amplitudes of the transitions

|ϕk〉 ↔ |ϕj〉, j 6= k. (9)

No transitions between the states |ϕk〉 are allowed if the density matrix (7) is diagonal (this
condition means the absence of interference terms in the time-depending case). Thus, the system
S is in an incoherent (coherent) superposition of the basis states |ϕk〉 if the density matrix (7)
is (not) diagonal with more than one non vanishing element. Notice, however, that the concept
of coherent superposition depends on the representation for the density matrix (see, e.g. [15]).

2.1. Missed correlations in reduced density operators
To get information of the subsystem SA we calculate a partial trace of ρ by summing up over
all the degrees of freedom of SB. Let us rewrite (7) in the form

ρ =



r11 r12 r13 r14
X11 = X++ ⊗X++ X12 = X++ ⊗X+− X13 = X+− ⊗X++ X14 = X+− ⊗X+−

r21 r22 r23 r24
X21 = X++ ⊗X−+ X22 = X++ ⊗X−− X23 = X+− ⊗X−+ X24 = X+− ⊗X−−

r31 r32 r33 r34
X31 = X−+ ⊗X++ X32 = X−+ ⊗X+− X33 = X−− ⊗X++ X34 = X−− ⊗X+−

r41 r42 r43 r44
X41 = X−+ ⊗X−+ X42 = X−+ ⊗X−− X43 = X−− ⊗X−+ X44 = X−− ⊗X−−


, (10)

where we have made explicit the relationship between the Hubbard operator Xkj corresponding
to rkj and the tensor product of the qubit Hubbard operators Xαβ, α, β = ±, associated to
SA and SB. Notice that the elements in red are of the form Xkj = Xαβ ⊗ Xγγ , so that
TrsBX

kj = Xαβ(TrXγγ) = Xαβ will preserve the element rkj in the position (α, β) of the
reduced matrix ρsA . The elements in black, in counterposition, make no contribution. Therefore,
we get

ρsA = TrsBρ =

r11 + r22 r13 + r24

r̄13 + r̄24 r33 + r44

 . (11)

In a similar form, the terms in blue of the matrix array

ρ =



r11 r12 r13 r14
X11 = X++ ⊗X++ X12 = X++ ⊗X+− X13 = X+− ⊗X++ X14 = X+− ⊗X+−

r21 r22 r23 r24
X21 = X++ ⊗X−+ X22 = X++ ⊗X−− X23 = X+− ⊗X−+ X24 = X+− ⊗X−−

r31 r32 r33 r34
X31 = X−+ ⊗X++ X32 = X−+ ⊗X+− X33 = X−− ⊗X++ X34 = X−− ⊗X+−

r41 r42 r43 r44
X41 = X−+ ⊗X−+ X42 = X−+ ⊗X−− X43 = X−− ⊗X−+ X44 = X−− ⊗X−−


, (12)

lead to the reduced density operator

ρsB = TrsAρ =

r11 + r33 r12 + r34

r̄12 + r̄34 r22 + r44

 . (13)
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Remark that (i) the anti-diagonal elements of ρ are missing in the reduced densities ρsA , ρsB ,
and (ii) all the diagonal elements of ρ are included in the diagonal of both reduced matrices.
The latter property means that the populations rkk represent information of the entire system
S that can be obtained from any of the subsystems S`. In contrast, property (i) means that the
probability amplitudes associated to the anti-diagonal coherences of ρ are not directly recoverable
from neither SA nor SB since the elements r41, r32, and their complex conjugates, are missing
in (11) and (13). According to (9), such amplitudes describe the transitions

|ϕ4〉 ↔ |ϕ1〉, |ϕ3〉 ↔ |ϕ2〉, (14)

which in the qubit basis read as

| − −〉 ↔ |+ +〉, | −+〉 ↔ |+−〉. (15)

The first expression in (14)-(15) represents a transition |−〉B ↔ |+〉B in SB that is conditioned
to the transition |−〉A ↔ |+〉A in SA and vice versa. Graphically,

|ϕ4〉 ↔ |ϕ1〉 means either


|−〉A ↔ |+〉A ⇒ |−〉B ↔ |+〉B

or

|−〉B ↔ |+〉B ⇒ |−〉A ↔ |+〉A

(16)

The second expression in (14)-(15) includes the following information

|ϕ3〉 ↔ |ϕ2〉 means either


|−〉A ↔ |+〉A ⇒ |+〉B ↔ |−〉B

or

|+〉B ↔ |−〉B ⇒ |−〉A ↔ |+〉A

(17)

Besides the anti-diagonal elements of ρ, other coherences rk,j 6=k are missed in ρsA and ρsB .
Namely, the trace over the degrees of freedom of SA eliminates the coherences included in the
anti-diagonal 2 × 2 sub-matrices of ρ, see Eq. (12). That is, the probability amplitudes of the
transitions |ϕ4〉 ↔ |ϕ2〉 and |ϕ3〉 ↔ |ϕ1〉 are also absent in ρsB . In turn, according to (10), the
tracing over SB overrides the information of the transitions |ϕ2〉 ↔ |ϕ1〉 and |ϕ4〉 ↔ |ϕ3〉 in ρsA .

For an arbitrary state ρ the off-diagonal elements of ρsA have not connections a priori with
the off-diagonal elements of ρsB . However, if S is in a pure state, the elements of ρsA and ρsB
are interrelated in such a manner that these last matrices have the same determinant. As we
shall see, this fact is useful in recovering the information of the transitions (14)-(17) by using
the information that is accessible from either ρsA or ρsB .

2.2. Pure and mixed states
Some relationships between ρsA and ρsB are achievable by considering a general pure state of
the system S, we take

|ψ〉 = a|ϕ1〉+ b|ϕ2〉+ c|ϕ3〉+ d|ϕ4〉, (18)

with |a|2 + |b|2 + |c|2 + |d|2 = 1. The pure state |ψ〉 would be the initial condition of the qubit
bipartite system S, assuming that the coupling of the qubits to the radiation fields in the cavities
is activated at t = 0. Using this state to construct the density operator ρψ = |ψ〉〈ψ|, one can
verify that the reduced densities

ρsA =

(|a|2 + |b|2 ac̄+ bd̄

āc+ b̄d |c|2 + |d|2

)
, ρsB =

(|a|2 + |c|2 ab̄+ cd̄

āb+ c̄d |b|2 + |d|2

)
, (19)
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have the determinant [16]:

Det ρsA = Det ρsB = |ad− bc|2 = |ad|2 + |cb|2 − [ad(bc) + (ad)bc]

= |r14|2 + |r32|2 − 2Re
(
r14r32 ei2(θd−θc)

)
, (20)

where d = |d| eiθd , c = |c| eiθc , and θd, θc ∈ R. The first two additive terms of (20) are the
probability densities associated to the transitions (14) while the third one corresponds to the
interference between such transitions. Remark that the determinant (20) is not null if at least
two coefficients in the superposition (18) are different from zero, provided they are such that
either ad 6= 0 or bc 6= 0.

Equation (20) makes clear that, besides the populations |a|2, |b|2, |c|2, |d|2, one can obtain
some other information of the entire state ρψ by studying the state of any of the subsystems
SA and SB. In particular, the determinant (20) is a measure of the transitions (14)-(17) that
occur in the entire system. For instance, let us assume that the transition |−〉A ↔ |+〉A occurs
at a given time t. According to (16) and (17), this last implies a transition in the state of SB
that is ruled by either |−〉B ↔ |+〉B or |+〉B ↔ |−〉B. In the former case the transition in SA
cancels the coherence r32 so that Det ρsA,B = |r14|4 ≡ |da|2. In the second case the coherence

r14 is nulled and Det ρsA,B = |r32|4 ≡ |bc|2. A similar description is obtained when either
|−〉B ↔ |+〉B or |+〉B ↔ |−〉B activate the transition process in the entire system. Remark
that these conditioned transitions in the subsystems SA and SB lead to maxima values of the
determinant (20). Transitions in SA that make no constraints in the transitions of its counterpart
SB, and viceversa, give rise to interference phenomena in the process. Indeed, from the previous
example, the (not binding) activation |−〉A ↔ |+〉A produces a superposition state in SB that
includes both transitions, |−〉B ↔ |+〉B and |+〉B ↔ |−〉B, with a probability different from
zero each one. Then, for not conditioned transitions, the interference term in (20) is relevant
since this can even cancel the determinant Det ρsA,B . In summary, the transitions in SA,B will
be occasionally conditioned by the transitions in SB,A, so that Det ρsA,B will oscillate between
minima and maxima values over the time.

As we can see, the determinant (20) represents a measure of the correlations that are lost after
the partial tracing of the entire state ρψ. Such correlations are represented by the conditioned
transitions (16)-(17) and produce maxima values in Det ρsA,B . Since this determinant takes
nonnegative values, one can introduce the normalized quantity [16]:

C(ρψ) = κ0

√
Det ρsA,B = κ0|ad− bc|, (21)

where the normalization constant κ0 (in our case κ0 = 2) makes C = 1 for the density operators
associated to the Bell basis vectors:

|β1〉 = 1√
2
(|+ +〉+ | − −〉), |β2〉 = 1√

2
(|+ +〉 − | − −〉),

|β3〉 = 1√
2
(|+−〉+ | −+〉), |β4〉 = 1√

2
(|+−〉 − | −+〉).

(22)

In the literature, the quantity C(ρψ) is known as concurrence and represents a measure of the
entanglement between the states of SA and those of SB whenever the entire system S is in a
pure state (see [8, 9] and references quoted therein). This quantity takes the values 0 ≤ C ≤ 1,
with C = 1 for fully entangled states and C = 0 for factorizable (not entangled) states. In our
case, C gives information of the correlation between the states |ϕ4〉 and |ϕ1〉 (|ϕ3〉 and |ϕ2〉) of
the entire system. If these are strongly correlated then, according to the cases discussed above,
one has

C(ρψ) = 2
√

Det ρsA,B = 2|ad|. (23)
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The correlation is maximum if |ad| = 1
2 . Then, as the vector (18) is normalized, we can take

a = d = 1/
√

2 to get |ψmaxb=c=0〉 = |β1〉. That is, the Bell vector |β1〉 defined in (22) corresponds to
a pure state of S for which the correlation between the basis vectors |ϕ4〉 and |ϕ1〉 is maximum.
Other values of this correlation are feasible by using a = cos θ and b = sin θ, with θ ∈ R, for
which

|ψ1,4(θ)〉 = cos θ|ϕ1〉+ sin θ|ϕ4〉 ⇒ C(ρψ(θ)) = | sin 2θ|. (24)

Notice that |ψ1,4(
π
4 )〉 = |β1〉 and |ψ1,4(

3π
4 )〉 = |β2〉 give C = 1. In similar form, for |ϕ3〉 and |ϕ2〉

we have
|ψ2,3(α)〉 = cosα|ϕ2〉+ sinα|ϕ3〉 ⇒ C(ρψ(α)) = | sin 2α|, α ∈ R. (25)

In this case |ψ2,3(
π
4 )〉 = |β3〉 and |ψ2,3(

3π
4 )〉 = |β4〉 give C = 1.

The notion of concurrence can be generalized to include mixed states, this is accomplished
by transforming the density operator ρψ as follows [17]:

ρ∗ψ = σ2 ⊗ σ2 ρψ σ2 ⊗ σ2, (26)

and calculating the trace of the product ρ∗ψ ρψ to get

C2(ρψ) = Tr(ρ∗ψ ρψ). (27)

The product σ2 ⊗ σ2 in (26) stands for the spin-flip operator [18]. Assuming that (27) holds for
an arbitrary state ρ, pure or mixed, the concurrence can be written as [9]:

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, λj > λj+1 , j = 1, 2, 3, (28)

where the nonnegative numbers λj are the square-roots of the eigenvalues of the operator ρ∗ρ.
In principle, the expression (28) applies not only to pure states but also for mixed states.

This is remarkable because, once the coupling between the qubits and the radiation fields is
initiated, each cavity includes a system (the qubit) in an active electromagnetic environment
(the photon bath). Therefore, the study of the qubit bipartite state requires a summation over
the degrees of freedom of the fields and, as we have discussed, this last produces leaky in the
information of the system. Hence, the description of the qubits system is necessarily done in
terms of mixed states.

3. Two entangled qubits coupled to two independent quantum oscillators
Now let us assume that each of the qubits of the previous section is coupled to an independent
single mode radiation field. The latter will be represented as a quantum harmonic oscillator
of frequency ωb and ladder operators a†, a = (a†)†. Using the dipole and rotating wave
approximations, and considering ωq ≈ ωb, the (dimensionless) Hamiltonian of the entire system
H = HA +HB has the components

H` = H0;` +HI;`, H0;` = N` +
1

2
+

1

2
σ3, HI;` = γ`(σ+a` + σ−a

†
`), ` = A,B, (29)

with {a`, a†`, N`} the generators of the photon algebra associated to the `th radiation field, γ`
the coupling strength in the `th cavity, and {σ3, σ±} the generators of the su(2) Lie algebra
associated to the excitation of the qubits in the cavities. Notice that we have dropped the
sub-label ` from these last operators for simplicity in notation. Hereafter we shall assume that
there is a bath of r (s) photons in cavity A (B), and γA = γB = γ.

The Hamiltonian H of the entire system S ′ is then formed of a free part H0;A +H0;B and a
coupling term HI;A + HI;B (no communication between cavities A and B is allowed, so that a
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coupling between them is not considered). It is straightforward to verify that [H0;`, HI;`′ ] = 0,
so there is a common vector basis for the free and coupling parts of the Hamiltonian.

The system S ′ we consider is tetra-partite: it is formed of two independent qubits S` coupled
to two independent photon baths Sb` , ` = A,B. Then, the state space of the entire system is
the direct sum [19,20]:

H =
⊕
n,m

Ξ(A)
n ⊗ Ξ(B)

m , (30)

where, provided n and m, the subspaces Hnm = Ξ
(A)
n ⊗ Ξ

(B)
m are given by

Hnm = Span{|+, n〉 ⊗ |+,m〉, |+, n〉 ⊗ |−,m+ 1〉, |−, n+ 1〉 ⊗ |+,m〉, |−, n+ 1〉 ⊗ |−,m+ 1〉}.

The time-evolution operator of the entire system is U(t) = e−iHt, since H is time-independent.
Considering that the cavities are one independent of the other, and the commutation properties
of H0;` and HI;`, one can write

U(t) = UA(t)⊗ UB(t) = e−iHI;At e−iH0;At⊗ e−iHI;Bt e−iH0;Bt, U(0) = IA ⊗ IB = I. (31)

In order to analyze the effect that the photon baths Sb = SbA + SbB produce in the correlations
between the states of the qubits subsystem S = SA + SB, let us assume that the initial state
of S is the vector |ψ2,3(α)〉 defined in (25). That is, the bipartite qubit system S is initially
correlated in the states |ϕ2〉 and |ϕ3〉 by an amount C0 = | sin 2α|. As the cavities have r and s
photons respectively, for S ′ we have the initial state

|Φ(0)〉 = |ψ2,3(α)〉 ⊗ |r〉 ⊗ |s〉 = cosα|+,−, r, s〉+ sinα|−,+, r, s〉. (32)

To rewrite |Φ(0)〉 in the representation of H given in (30) we use the fact that the direct
product A⊗B is permutation equivalent to B ⊗A, see Theorem M4 of [14]. Therefore, up to a
permutation, we have

|Φ(0)〉 = cosα|+, r〉 ⊗ |−, s〉+ sinα|−, r〉 ⊗ |+, s〉. (33)

Notice that the initial state |Φ(0)〉 is in the subspace Hr,s−1⊕Hr−1,s ⊂ H. Applying (31) in (33)

we get, up to a global phase e−i(r+s+1)t, the time-evolved state of the tetra-partite system

|Φ(t)〉 = cosα
{
i cos(γt

√
r + 1) sin(γt

√
s)|+, r〉 ⊗ |+, s− 1〉

+ cos(γt
√
r + 1) cos(γt

√
s)|+, r〉 ⊗ |−, s〉 − sin(γt

√
r + 1) sin(γt

√
s)|−, r + 1〉 ⊗ |+, s− 1〉

+i sin(γt
√
r + 1) cos(γt

√
s)|−, r + 1〉 ⊗ |−, s〉

}
+sinα

{
i cos(γt

√
s+ 1) sin(γt

√
r)|+, r − 1〉 ⊗ |+, s〉−sin(γt

√
r) sin(γt

√
s+ 1)|+, r−1〉⊗|−, s+1〉

+ cos(γt
√
r) cos(γt

√
s+ 1)|−, r〉 ⊗ |+, s〉 +i cos(γt

√
r) sin(γt

√
s+ 1)|−, r〉 ⊗ |−, s+ 1〉

}
. (34)

Remarkably, the time-evolved state |Φ(t)〉 is in the subspace Hr,s−1 ⊕Hr−1,s ⊕Hr,s+1 ⊂ H; its
eight components give rise to a pure state ρ(t) = |Φ(t)〉〈Φ(t)| that is expressed in terms of sixty
four Hubbard operators [16]. Tracing over Sb, for the qubit bipartite system S one gets the
mixed state

ρq(α, r, s; t) =


Ω11 0 0 0
0 Ω22 Ω23 0
0 Ω32 Ω33 0
0 0 0 Ω44

 , (35)
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where the time-dependent matrix elements Ωkj(α, r, s; t) are given by

Ω11 = cos2 α cos2(γt
√
r + 1) sin2(γt

√
s) + sin2 α cos2(γt

√
s+ 1) sin2(γt

√
r),

Ω22 = cos2 α cos2(γt
√
r + 1) cos2(γt

√
s) + sin2 α sin2(γt

√
s+ 1) sin2(γt

√
r),

Ω33 = cos2 α sin2(γt
√
r + 1) sin2(γt

√
s) + sin2 α cos2(γt

√
s+ 1) cos2(γt

√
r),

Ω44 = cos2 α sin2(γt
√
r + 1) cos2(γt

√
s) + sin2 α sin2(γt

√
s+ 1) cos2(γt

√
r),

Ω23 = Ω32 = cosα sinα cos(γt
√
r + 1) cos(γt

√
r) cos(γt

√
s+ 1) cos(γt

√
s).

The mixed state (35) is a coherent superposition of the basis kets |ϕk〉 for α ∈ (0, 2π), with
α 6= π

2 , π,
3π
2 , and r 6= 0, s 6= 0. This has only two nonzero off-diagonal elements Ω23 = Ω32 ∈ R

that arise from the operation

Trsb(|+, r〉 ⊗ |−, s〉)(〈−, r| ⊗ 〈+, s|) = X+− ⊗X−+ = X23.

The latter is the trace over Sb of the outer product between the second and seventh kets of (34).
Such outer product corresponds to a coherence in the entire tetra-partite state ρ(t) that involves
the probability amplitude of the conditioned transition

|+, r〉cav A → |−, r〉cav A ⇔ |−, s〉cav B → |+, s〉cav B. (36)

As Ω23 is the qubit coherence involving the bipartite states |ϕ2〉 and |ϕ3〉, Eq. (36) means that
the qubit transitions (17) are performed without a change in the number of photons in the
cavities! Thus, there is a missing photon in cavity A and an additional photon in cavity B. The
former is, in principle, released by SA in its decaying from |+〉A to |−〉A. The second is required
by SB in its excitation from |−〉B to |+〉B. However, there is no communication between cavities
A and B, so that the photon released by SA is, with certainty, not the photon that increases
the energy of SB. The puzzle is best analyzed by considering the initial state (33) of the entire
system S ′. This is a linear combination of two orthogonal vectors |+, r,−, s〉 and |−, r,+, s〉 that
share the same eigenvalue of the (free of interaction) energy E0;A+B = r+ s+ 1. Then, at t = 0,
the system S ′ is in the state |+, r−, s〉 with probability cos2α, and in the state |−, r,+, s〉 with
probability sin2α. Therefore, from the very beginning, we do not know whether the system of
cavity A is in the state |+, r〉 or in the state |−, r〉. A similar argument holds for the state of
the system of cavity B. This fact is evidence of the non-locality of the quantum states involved
since, if we avoid the coherence of |Ψ(0)〉 by making α = 0 (α = π

2 ), then we know with certainty
that the system A is initially in the state |+, r〉 (|−, r〉) while the system B is in the state |−, s〉
(|+, s〉), and then the state ρq in (35) is an incoherent superposition of the four basis vectors
(6). The transition (36) is, in this form, a consequence of the coherence Ω23 between the states
|+, r,−, s〉 and |−, r,+, s〉, established at t = 0 by the degree of correlation C0 = | sin 2α| of the
qubits (see Figure 1). The other non-zero coherence Ω32 = Ω23 in (35) refers to the reversed
process |−, r,+, s〉 → |+, r,−, s〉.

On the other hand, the straightforward calculation leads to the diagonal form of the qubit
density matrix, ρq = diag(λ1, λ2, λ3, λ4), where λk are its eigenvalues

λ1 = Ω11, λ2 =
(Ω22 + Ω33) +

√
(Ω22 + Ω33)2 + 4(Ω2

23 − Ω22Ω33)

2
,

λ3 = Ω22 + Ω33 − λ2, λ4 = Ω44.

(37)

The related eigenvectors read as follows

|φλ1〉 = |ϕ1〉, |φλ2〉 = |ψ2,3(α)〉, |φλ3〉 = |ψ2,3(−α)〉, |φλ4〉 = |ϕ4〉. (38)

Mielnik50 IOP Publishing
Journal of Physics: Conference Series 624 (2015) 012004 doi:10.1088/1742-6596/624/1/012004

8



  
excited + s  photons

excited + r  photons ground + s  photons

ground + r+1 photons excited + s­1 photons ground + r  photons

Local Non-local

r s

r+1 s­1 r s

aa†

Figure 1. Schematic representation of the states transition (36), in all cases the parabolic curve represents
the photon bath, blue and red dots mean respectively occupation of the excited and ground energy levels of the
qubit (horizontal lines), and cavity A (left) is separated from cavity B (right) by an impenetrable barrier. The
coherence Ω23 of the density operator (35) implies the change from the configuration depicted in the upper line to
the one in the lower line. There are two possible forms to get such a transition. A local phenomenon (lower line,
left) requires at least two photons that are not included in the initial configuration: one released by the qubit SA
(represented by a†) and one absorbed by the qubit SB (represented by a). As the impenetrable barrier forbids
communication between the cavities, the photon created in cavity A is, with certainty, not the one annihilated
in cavity B. On the other hand, a non-local phenomenon (lower line, right) requires no photons of interchange.
This is a consequence of the linear superposition in the initial state (33). That is, the transition (36) corresponds
to transforming the configuration |+, r,−, s〉, that initially occurs with probability cosα2, into the configuration
|−, r,+, s〉, that occurs with probability sinα2 at t = 0. The other not null coherence Ω32 = Ω23 in (35) is
associated to the reversed process |−, r,+, s〉 → |+, r,−, s〉.

The four vectors (38) are orthonormal so that ρq can be expressed as follows

ρq = diag(λ1, λ2, λ3, λ4) = λ1X
11 + λ2X

22(α) + λ3X
33(α) + λ4X

44

with X22(α) = |ψ2,3(α)〉〈ψ2,3(α)| and X33(α) = |ψ2,3(−α)〉〈ψ2,3(−α)|. The diagonal form of ρq
verifies that it is the probabilistic mixture of two disentangled pure states |ϕ1〉, |ϕ4〉, and two
partially entangled pure states |ψ2,3(α)〉, |ψ2,3(−α)〉. It is now easy to verify that Tr(ρq) = 1,
and Tr(ρ2q) < 1, as expected.

In order to analyze the qubits’ transitions we calculate the population inversion by using

P(A,B)
+− = Tr(ρqA,Bσ3), with ρqA,B = TrsB,Aρq the trace of ρq over the degrees of freedom of SB

(SA). We obtain

P(A)
+− = cos2 α cos(2γt

√
r + 1)− sin2 α cos(2γt

√
r),

P(B)
+− = sin2 α cos(2γt

√
s+ 1)− cos2 α cos(2γt

√
s).

(39)

At t = 0 one gets the inversions defined by the initial state |Φ(0)〉 in (33), namely P(A)
+− =

cos2 α − sin2 α = −P(B)
+− . For fully entangled qubits (α = π/4 or α = 3π/4) the populations in

each energy level are the same and the inversion is equal to zero in both cavities (see Figure 2,
left). In turn, partially entangled qubits (i.e., for other allowed values of α) produce inversions
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Figure 2. The time-dependence of the population inversions (39), qubit A in blue and qubit B in red. In both
cavities the number of photons is the same r = s = 10. For fully entangled initial qubits with α = π/4 (left),
the time-evolution is the same in both cavities and the correlation between the qubits is smaller as larger is the
absolute value of the inversion. For initial partially entangled qubits with α = 9π/20 (right), the inversions have

opposite sign and the correlation is smaller as larger is the absolute value of P(A)
+− +P(B)

+− . In both cases the initial
correlation is lost in the vicinity of t = 10.

that differ by a sign in the cavities (Figure 2, right). The sinusoidal time-dependence of the
population inversion in both cavities leads to a periodic repetition of the initial configuration.
That is, the initial configuration will be lost and recovered periodically with time; the times at
which it is lost are the times at which there is no correlation between the qubit in cavity A and the
one in cavity B. In the case of fully entangled initial states, the correlation between the qubits
is smaller as larger are the absolute values of the population inversions. For partially entangled

states, the correlation is smaller as larger is the absolute value of the quantity P(A)
+− + P(B)

+− .
In Figure 2 we have depicted the time-evolution of the population inversions (39) for a fully
entangled state (α = π/4) and a partially entangled state (α = 9π/20) as initial condition, in
both cases the number of photons is the same r = s = 10. Notice that the fully entangled case
(Figure 2, left) departs from zero at t = 0 and reaches the same value at t = 20 (approx.).
Besides, it oscillates between 1 and −1 in the vicinity of t = 10; in this last interval of time
t ∈ 10± δ the correlations between the qubit A and the qubit B are lost. In turn, the partially

entangled case (Figure 2, right) departs from P(A)
+− + P(B)

+− = 0 at t = 0 and is such that

P(A)
+− + P(B)

+− = ±2 in the vicinity of t = 10. As in the previous case, the correlations between
the qubits are lost for t ∈ 10± δ.

The above description of the time-evolution of the correlation between the qubits is in
agreement with the notion of concurrence discussed in the previous section. In Figure 3 we
compare the time dependence of the population inversion and the concurrence for the fully
entangled state |β3〉 as initial condition. As it can be appreciated, the concurrence is minimum
when the population inversion is in either its minimum (−1) or its maximum (1) value. In that
case, we know that the two qubits are respectively in either the state |+〉 or |−〉, so that the
initial configuration (the same probability to be in |+〉 as in |+〉) is lost. In turn, the concurrence
is maximum when the population inversion cancels (the initial configuration!). Therefore, the
collapses and revivals of the population inversion are a direct measure of the entanglement
between the qubits, these last are maximally entangled at the time a revival occurs and they
are disentangled when the inversion collapses. This oscillatory behavior of the concurrence is
associated to the concepts of sudden dead and recovery of entanglement in the literature [21].
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Figure 3. Time-evolution of the concurrence (28) and population inversions (39) for a pair of fully entangled
qubits (α = π/4) coupled to two photon baths (10 photons each one) in isolated cavities. The maxima of the
absolute values of the population inversion (blue) represent the lost of correlations between the qubits and coincide
with the minima of the concurrence (black). At the right we have depicted a detail of the curves in a shorter
interval of time for comparison.

4. Concluding remarks
We have studied the time-evolution of the correlations between a pair of qubits that are coupled
to independent photon baths. We have shown that the population inversion of each of the qubits
gives the same information as the concurrence. This last because the partial trace of the density
matrix associated to the entire system produces leaky information that can be recovered by
analyzing the transitions between the energy states of the qubits.
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[20] M. Enŕıquez and O. Rosas-Ortiz, in preparation
[21] M. Yonac, T. Yu and J.H. Eberly, J. Phys. B: At. Mol. Opt. Phys. 39 (2006) S621

Mielnik50 IOP Publishing
Journal of Physics: Conference Series 624 (2015) 012004 doi:10.1088/1742-6596/624/1/012004

11


