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Abstract. We recall several cryptographic protocols based on entanglement alone and also
on entanglement swapping. We make an exposition in terms of the geometrical aspects of the
involved Hilbert spaces, and we concentrate on the formal nature of the used transformations.

1. Introduction
Entanglement has been widely exploited in the design of protocols and procedures for
communication, cryptography and computation within quantum contexts. Quantum codes
guarantee that information has been transmitted without any alteration. Cryptographic
protocols aid for key agreement for secure communication, namely unconditionally secure
information exchange. Entanglement has been used to implement and to speed-up paradigmatic
quantum algorithms [1, 2].

Entanglement swapping may entangle two quantum systems without direct interaction among
them, and this fact is exploited within several quantum cryptography schemes.

Here, we recall several well known cryptographic protocols using entanglement, alone, and
entanglement swapping: the Quantum Secure Direct Communication Protocol (see Table 3
below) communicates securely bit strings with an even length, the Quantum Bidirectional
Communication Protocol (see Table 4 below) is a generalization of the above protocol in which
the communicating parts exchange simultaneously messages of even bit length, the Quantum
Multidirectional Communication Protocol (see Table 8 below) allows the message exchange
among three parts using the maximally entangled GHZ states, at Table 9 we recall a three
parties protocol in which two correspondents communicate securely just after the authorisation
of a third party (who does not catch the message exchange), and finally, the Key Agreement
Protocol Using Entanglement Swapping is sketched at Table 10 in order to illustrate the use of
entanglement swapping in cryptographic protocols.

We emphasize the algebraic aspect of the Hilbert space nature of all the involved protocols We
establish a correspondence among unitary transforms, obtained as tensor products of Pauli maps,
and permutations of basic vectors in the Hilbert spaces. These correspondence are summarized
at Tables 2 and 6. Also, explicit expressions of the Bell basis, in terms of the Hadamard basis
are given.

For any two integer numbers i, j ∈ Z+, with i ≤ j, let us write

[[i, j]] = {i, i+ 1, . . . , j − 1, j}.
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2. Qubits and Pauli transforms
Let H1 = C

2 be the two-dimensional complex Hilbert space. The unit sphere of H1 is the set
of qubits. The canonical basis consists of the vectors e0 = [1 0]T and e1 = [0 1]T . Usually, it
is written |0〉 = e0 and |1〉 = e1. Let h0 = 1√

2
(|0〉 + |1〉) and h1 = 1√

2
(|0〉 − |1〉) be the vectors

forming the Hadamard basis at H1.
Let us consider the Pauli operators

σ0 =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)

σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

) (1)

and let us number them as [σ0 σ1 σ2 σ3] = [σ0 σx σy σz]. The action of these operators
over the vectors at the canonical and the Hadamard basis is sketched at Table 1. At each entry
is located the value of σi at the vector labeling the corresponding column. We see that, up to a

Table 1. Action of the Pauli operators on basis vectors

|0〉 |1〉 h0 h1

σ0 |0〉 |1〉 h0 h1

σ1 |1〉 |0〉 h0 −h1

σ2 −i |1〉 i |0〉 ih1 −ih0

σ3 |0〉 − |1〉 h1 h0

factor which is a unitary complex number, the canonical basis remains fixed by σ0 and σ3 and
is switched by σ1 and σ2 while the Hadamard basis remains fixed by σ0 and σ1 and is switched
by σ2 and σ3. Thus, the operator σ2 is switching both basis.

Let H2 = H1 ⊗H1 be the Hilbert space containing the 2-quregisters. Any 2-quregister x has
two components x0 and x1, each at the factor space H1, they are qubits. Let for i, j ∈ [[0, 1]],

bij =
1√
2

(|0i〉+ (−1)j
∣∣1i〉) ,

here the overline denotes complement modulus 2. Then B = (bij)i,j∈[[0,1]] is the Bell basis of

H2 and consists of four maximally entangled states. In terms of the Hadamard basis, the Bell
vectors are expressed as follows:

b00 =
1√
2
(h0 ⊗ h0 + h1 ⊗ h1)

b01 =
1√
2
(h1 ⊗ h0 + h0 ⊗ h1)

b10 =
1√
2
(h0 ⊗ h0 − h1 ⊗ h1)

b11 =
1√
2
(h1 ⊗ h0 − h0 ⊗ h1)

Any sequence C = (ck)k≥0 whose terms are elements of B determines two sequences of qubits
C0 = (ck0)k≥0 and C1 = (ck1)k≥0.
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Through the radix expression of an index in base 2, we may number the Bell basis as
B = (bk)k∈[[0,22−1]]. The tensor products σij = σi ⊗ σj determine bijections αij : B → B,
such that

∀(i, j) ∈ [[0, 3]]2 ∀k ∈ [[0, 22 − 1]] : σij(bk) ∈ L(bαij(k)). (2)

Let A2 : σij 	→ αij be the map that associates to each tensor product σij the corresponding
permutation that it defines at the Bell basis. The image of A2 consists of just 4 = 22

permutations (β�)�∈[[0,23−1]], and each permutation is defined by 4 tensor products σij as
summarized at the Table 2: the first column displays the index �, the second column the
permutation β� and the third column the list of tensor product maps σij producing β� under
the map A2.

Table 2. Correspondence on permutations of the Bell basis and tensor products of Pauli
operators

� β� A−1
2 (β�)

0 [0 1 2 3] {σ00, σ01, σ02, σ03}
1 [2 3 0 1] {σ01, σ00, σ03, σ02}
2 [3 2 1 0] {σ02, σ03, σ00, σ01}
3 [1 0 3 2] {σ03, σ02, σ01, σ00}

Table 2 can in turn be summarized as

∀i ∈ [[0, 3]] : A2(σiβ0(i)) = β0, A2(σiβ3(i)) = β1,

A2(σiβ1(i)) = β2, A2(σiβ2(i)) = β3.
(3)

By looking at relation (2), we see that if i and k remain fixed, then the index j can be encoded
by the value αij(k). This property can be exploited for secure communication purposes.

In Table 3 a Quantum Secure Direct Communication Protocol [3] is sketched. The purpose of
this protocol is to communicate securely a word in [[0, 3]]∗. Alice should communicate a message
[μκ]

m−1
κ=0 ∈ [[0, 3]]m. Alice and Bob fix a Pauli transform σi, a Bell quregister bk ∈ B, an integer

n > m and an index set J ∈ [[0, n− 1]](m). They share initially a constant sequence C = (cκ)
n−1
κ=0

whose terms coincide with bk ∈ B.
Using sequences of entangled quregisters it is also possible to build bidirectional

communication protocols. In Table 4 a Quantum Bidirectional Communication Protocol is
sketched [4]. The purpose of this protocol is to communicate securely two words in [[0, 3]]∗,
one going from Alice to Bob and the other in the opposite direction. Alice and Bob should
interchange messages in [[0, 1]]2n, and they share initially a constant sequence C = (cκ)

n−1
κ=0.

3. Entanglement swapping
Entanglement swapping is a phenomenon which allows to put two particles into entangled states
although these particles have not been close at any time. Departing from two pairs of entangled
particles, a particle is chosen from each pair, then the joint pair of selected particles is measured
with respect to the Bell basis, resulting in an entangled state. As a consequence, the pair
consisting of the two partner particles is also entangled. This last pair is the result of the
entanglement swapping beginning from the original two pairs.

In two 2-quregisters there are involved 4 qubits, let us identify them with the four indexes
in the integer interval [[0, 3]]. Let us write |ε〉μ, for ε ∈ {0, 1}, μ ∈ [[0, 3]], to denote the state of

Mielnik50 IOP Publishing
Journal of Physics: Conference Series 624 (2015) 012003 doi:10.1088/1742-6596/624/1/012003

3



Table 3. Quantum Secure Direct Communication Protocol

Alice Bob

pads the message [μκ]
m−1
κ=0 into a

sequence [jκ]
n−1
κ=0 by inserting the

message into the positions at J

codifies the message [jκ]
n−1
κ=0 by

calculating D1 = (σjκ(cκ1))
n−1
κ=0

sends D1 through a quantum chan-
nel

D1−→ receives D1

calculates D0 = (σi(cκ0))
n−1
κ=0, which

actually completes the calculation of
D = ((σi ⊗ σjκ)(cκ))

n−1
κ=0

calculates E by measuring each term
at D with respect to the Bell basis

recovers the sequence (αijκ(k))
n−1
κ=0,

consequently the padded sequence
[jκ]

n−1
κ=0, and the original message

[μκ]
m−1
κ=0

Table 4. Quantum Bidirectional Communication Protocol

Alice Bob
by taking pairs of contiguous bits,
she writes her message as a word
(iκ)

n−1
κ=0 ∈ [[0, 3]]n

by taking pairs of contiguous bits,
he writes his message as a word
(jκ)

n−1
κ=0 ∈ [[0, 3]]n

codifies her message by calculating
D0 = (σiκ(cκ0))

n−1
κ=0

codifies his message by calculating
D1 = (σjκ(cκ1))

n−1
κ=0

sends D0 through a quantum chan-
nel

D0−→ receives D0

receives D1
D1←− sends D1 through a quantum chan-

nel
for each κ ∈ [[0, n − 1]] she measures
the entangled quregister dκ with
respect to the Bell basis

for each κ ∈ [[0, n − 1]] he measures
the entangled quregister dκ with
respect to the Bell basis

since she knows iκ, using (2), she
recovers jκ

since he knows jκ, using (2), he
recovers iκ

the μ-th qubit. For any two different indexes μ, ν ∈ [[0, 3]], let the respective Bell basis of the
Hilbert space H2 be

(
b
(μν)
ij =

1√
2

(
|0i〉μν + (−1)j

∣∣1i〉
μν

))
i.j∈[[0,1]]

.

Let us assume that the 2-quregister consisting of the qubits 0 and 1 is entangled as well as the
pair of qubits 2 and 3. Then a basis of the space H4 is

B(01)(23) =
(
zi0j0i1j1 = b

(01)
i0j0

⊗ b
(23)
i1j1

)
i0,j0,i1,j1∈[[0,1]]

, (4)
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where ∀i0, j0, i1, j1 ∈ [[0, 1]]:

zi0j0i1j1 =
1

2

(
|0i00i1〉0123 + (−1)j1

∣∣0i01i1〉0123
+(−1)j0

∣∣1i00i1〉0123 + (−1)j0+j1
∣∣1i01i1〉0123

)
. (5)

By rearranging the pairs and considering the pairs (0, 2) and (1, 3), we have that a second basis
of H4 is

B(02)(13) =
(
b
(02)
i0j0

⊗ b
(13)
i1j1

)
i0,j0,i1,j1∈[[0,1]]

, (6)

where ∀i0, j0, i1, j1 ∈ [[0, 1]]:

b
(02)
i0j0

⊗ b
(13)
i1j1

=
1

2

(
|0i00i1〉0213 + (−1)j1

∣∣0i01i1〉0213
+(−1)j0

∣∣1i00i1〉0213 + (−1)j0+j1
∣∣1i01i1〉0213

)
.

By swapping the middle qubits, the following 4-quregisters result: ∀i0, j0, i1, j1 ∈ [[0, 1]],

yi0j0i1j1 =
1

2

(
|00i0i1〉0123 + (−1)j1

∣∣01i0i1〉0123
+(−1)j0

∣∣10i0i1〉0123 + (−1)j0+j1
∣∣11i0i1〉0123

)
. (7)

Each 2-quregister zi0j0i1j1 given by relation (5) can be expressed in terms of the 2-quregisters
yi0j0i1j1 given by relation (7), namely:

zi0j0i1j1 =
1

2

(
yi0j0i1j1 + (−1)j1yi0j0i1j1

+(−1)j0yi0j0i1j1
+ (−1)j0+j1yi0j0i1j1

)
, (8)

and this relation is symmetric:

yi0j0i1j1 =
1

2

(
zi0j0i1j1 + (−1)j1zi0j0i1j1

+(−1)j0zi0j0i1j1 + (−1)j0+j1zi0j0i1j1

)
, (9)

In this way, the entanglement of the 4-registers z is reflected by the entanglement of the 4-
registers y, in other words, the entanglement of the pairs (0, 1) and (2, 3) is swapped into the
entanglement of the pairs (0, 2) and (1, 3), and conversely.

4. Three-entanglement
Let us consider multi-party bidirectional protocols. In particular, we will illustrate these
procedures with three communicating parties. A proper protocol considers maximally entangled
3-quregisters, members of H3 = H1 ⊗H2. Any 3-quregister x has three components x0, x1 and
x2, each at the factor space H1, they are qubits. For ε1, ε2, ε3 ∈ [[0, 1]] let

bε1ε2ε3 =
1√
2
(|0ε1ε2〉+ (−1)ε3 |1ε1ε2〉) .

These vectors form a basis, B3, analogous to the Bell basis in H3, but they are called
Greensberger-Horne-Zeilinger (GHZ) states. In terms of the Hadamard vectors, the GHZ states
are expressed as shown at the Table 5.
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Table 5. The GHZ states in terms of the Hadamard basis of qubits.

b000 =
1

2
(h0 ⊗ (h0 ⊗ h0 + h1 ⊗ h1) + h1 ⊗ (h0 ⊗ h1 + h1 ⊗ h0))

b001 =
1

2
(h1 ⊗ (h0 ⊗ h0 + h1 ⊗ h1) + h0 ⊗ (h0 ⊗ h1 + h1 ⊗ h0))

b010 =
1

2
(h0 ⊗ (h0 ⊗ h0 − h1 ⊗ h1) + h1 ⊗ (−h0 ⊗ h1 + h1 ⊗ h0))

b011 =
1

2
(h1 ⊗ (h0 ⊗ h0 − h1 ⊗ h1) + h0 ⊗ (−h0 ⊗ h1 + h1 ⊗ h0))

b100 =
1

2
(h0 ⊗ (h0 ⊗ h0 − h1 ⊗ h1) + h1 ⊗ (h0 ⊗ h1 − h1 ⊗ h0))

b101 =
1

2
(h1 ⊗ (h0 ⊗ h0 − h1 ⊗ h1) + h0 ⊗ (h0 ⊗ h1 − h1 ⊗ h0))

b110 =
1

2
(h0 ⊗ (h0 ⊗ h0 + h1 ⊗ h1) + h1 ⊗ (−h0 ⊗ h1 − h1 ⊗ h0))

b111 =
1

2
(h1 ⊗ (h0 ⊗ h0 + h1 ⊗ h1) + h0 ⊗ (−h0 ⊗ h1 − h1 ⊗ h0))

Through the radix expression of an index in base 2, we may number the Bell basis as
B3 = (bk)k∈[[0,23−1]]. The tensor products σijk = σi⊗σj⊗σk determine bijections αijk : B3 → B3

in an analogous way as in (2):

∀(i, j, k) ∈ [[0, 3]]3 ∀� ∈ [[0, 23 − 1]] : σijk(b�) ∈ L(bαijk(�)). (10)

Let A3 : σijk 	→ αijk be the map that associates to each tensor product σijk the corresponding
permutation at the Bell basis. The image of A3 consists of just 8 = 23 permutations
(βμ)μ∈[[0,23−1]], and each permutation is defined by 8 tensor products σijk as summarized in

Table 6. As seen at the beginning of section 2, the operator σ2 switches the canonical and the

Table 6. Correspondence on permutations of the Bell basis and tensor products of Pauli
operators

μ βμ A−1
3 (βμ)

0 [0 1 2 3 4 5 6 7] {σ000, σ033, σ111, σ122, σ212, σ221, σ303, σ330}
1 [2 3 0 1 6 7 4 5] {σ003, σ030, σ112, σ121, σ211, σ222, σ300, σ333}
2 [3 2 1 0 7 6 5 4] {σ001, σ032, σ110, σ123, σ213, σ220, σ302, σ331}
3 [1 0 3 2 5 4 7 6] {σ002, σ031, σ113, σ120, σ210, σ223, σ301, σ332}
4 [4 5 6 7 0 1 2 3] {σ010, σ023, σ101, σ132, σ202, σ231, σ313, σ320}
5 [6 7 4 5 2 3 0 1] {σ013, σ020, σ102, σ131, σ201, σ232, σ310, σ323}
6 [7 6 5 4 3 2 1 0] {σ011, σ022, σ100, σ133, σ203, σ230, σ312, σ321}
7 [5 4 7 6 1 0 3 2] {σ012, σ021, σ103, σ130, σ200, σ233, σ311, σ322}

Hadamard basis. Let us consider just operators of the form σijk where i ∈ [[0, 3]], j, k ∈ {0, 2}.
Then, the restriction of Table 6 to operators at the set S = {σijk| i ∈ [[0, 3]], j, k ∈ {0, 2}} is
shown at Table 7.

In Table 8 a Quantum Multidirectional Communication Protocol is sketched [4, 5]. The
purpose of this protocol is to communicate securely four classical bits, two emitted by Alice,
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Table 7. Correspondence on permutations of the Bell basis and tensor products of Pauli
operators at the set S, in alphabetical order according to the first element at S ∩ A−1

3 (βμ).
Observe that if one index i, j, k is known, the other two can be deduced form this index and the
3-quregister σijk(b�).

μ S ∩A−1
3 (βμ)

0 {σ000, σ122}
3 {σ002, σ120}
5 {σ020, σ102}
6 {σ022, σ100}
7 {σ200, σ322}
4 {σ202, σ320}
2 {σ220, σ302}
1 {σ222, σ300}

one by Bob and another by Claire. By repeating the protocol the parties may exchange longer
bit-strings. Alice, Bob and Claire should interchange four classical bits, two emitted by Alice,
one by Bob and another by Claire. The parties share two GHZ states, c0 = c1 = b� ∈ H3

with respective components c00, c10, c20 and c01, c11, c21. The components c0k, c1k, c2k are in
possession of Alice, Bob and Claire respectively, k ∈ [[0, 1]]. The quregister c0 is a record of the
initial state b�, while the quregister c1 is to be transformed during the protocol.

Table 8. Quantum Multidirectional Communication Protocol

(i) The two bits of Alice determine an index iA ∈ [[0, 3]]. She applies σiA to her qubit c01.

(ii) Bob applies either σ0 or σ2 to his qubit c11 according to the value of his bit.

(iii) Claire applies either σ0 or σ2 to her qubit c21 according to the value of her bit.

(iv) They take a measure of the transformed quregister with respect to the Bell basis.

(v) Using table 7, since each participant knows his/her own message, they recover the
transmitted bits.

Another bidirectional protocol [6] consists of three participants: Alice and Bob are the
correspondents and Claire is the controller. The correspondents are able to communicate only
after the authorization of the controller, but their correspondence should be kept in secret against
the controller. The protocol is sketched at Table 9. Alice and Bob should interchange messages
at [[0, 3]]m after the authorization granted by Claire. The parties share a constant sequence
(cν)

n−1
ν=0 whose entries coincide with a GHZ initial state b�. The component sequence (c0ν)

n−1
ν=0 ,

let us say for ease of explanation, is owned by Claire, the component sequence (c1ν)
n−1
ν=0 by Alice

and the component sequence (c2ν)
n−1
ν=0 by Bob.

A Key Agreement Protocol Using Entanglement Swapping is obtained [7] as follows. Let B
(μν)
2

be the Bell basis considering two qubits μ, ν ∈ [[0, 3]], μ �= ν.
Let c(01), c(23) be two Bell 2-quregisters with respective components c(0), c(1) and c(2), c(3).
Alice may act on the pair (c(01), c(23)) = [c(0), c(1), c(2), c(3)] either by (A0:) doing nothing or

by (A1:) swapping the middle qubits, obtaining thus [c(0), c(2), c(1), c(3)].
Bob may act on the pair (c(01), c(23)) = [c(0), c(1), c(2), c(3)] either by (B0:) measuring

[c(0), c(1)] with respect to the Bell basis B
(01)
2 and measuring [c(1), c(2)] with respect to the Bell
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Table 9. Quantum Controlled Bidirectional Communication Protocol

(i) Alice and Bob agree a set J ⊂ [[0, n−1]] of m positions among the index set [[0,m−1]].

(ii) Alice codifies her message (aμ)
m−1
μ=0 ∈ [[0, 3]]m−1 by applying σaμ to her correspondent

qubit c1νμ , with νμ ∈ J , and she applies arbitrary Pauli operators at her qubits with
indexes not in J . Alice sends her codified sequence to Claire.

(iii) Bob codifies his message (bμ)
m−1
μ=0 ∈ [[0, 3]]m−1 by applying σbμ to his correspondent

qubit c2νμ , with νμ ∈ J , and he applies arbitrary Pauli operators at his qubits with
indexes not in J . Bob sends his codified sequence to Claire.

(iv) Claire receives the component sequences
(
c1νμ

)n−1

ν=0
and

(
c2νμ

)n−1

ν=0
, and she measures

the whole sequence
(
cνμ

)n−1

ν=0
with respect to the basis B3. She sends her results to

Alice and Bob as an authorization to proceed the transaction.

(v) Using the table 6, her knowledge of her own message and the index set J , Alice recovers
Bob’s message (bμ)

m−1
μ=0 ∈ [[0, 3]]m−1.

(vi) Using the table 6, his knowledge of his own message and the index set J , Bob recovers
Alice’s message (aμ)

m−1
μ=0 ∈ [[0, 3]]m−1.

basis B
(23)
2 or (B1:) by measuring [c(0), c(2)] with respect to the Bell basis B

(02)
2 and measuring

[c(1), c(3)] with respect to the Bell basis B
(13)
2 .

If the chosen actions are (A0, B0) or (A1, B1), the actions are said to be correlated, otherwise,
they are anticorrelated.

Table 10. Key Agreement Protocol Using Entanglement Swapping

(i) Alice selects a sequence B =
(
bα(k)

)2m−1

k=0
of entangled states at the Bell basis. Each

pair of two such states
(
bα(2k),bα(2k+1)

)
, k ∈ [[0,m − 1]], involves 4 qubits, say

[c(0k), c(1k), c(2k), c(3k)]

(ii) For each k ∈ [[0,m − 1]], Alice applies an operation A0 or A1 to the current pair(
bα(2k),bα(2k+1)

)
. She obtains the sequence C and she sends this sequence to Bob

through a public quantum channel.

(iii) Bob receives the sequence C and for any block of 4 consecutive qubits, say
[d(0k),d(1k),d(2k),d(3k)], he selects randomly an operation B0 or B1 and he applies
it to [d(0k),d(1k),d(2k),d(3k)].

(iv) Alice and Bob exchange through a classic channel the lists of their corresponding
selected operations.

(v) The common key is established by selecting the 4 blocks measurements corresponding
to the correlated pairs of operations.

(vi) It is worth to remark that at the anticorrelated positions, both Alice and Bob may
recover two common bits, corresponding to the initial state of Alice for the current
4-block.

In the protocol, the agreed common key is the juxtaposition of the measures obtained at
the positions in which correlated operators do occur. When looking for a greater efficiency it
is possible to recover also not 4, for 2 bits at any block corresponding to an anti correlated
operator.
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