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Abstract. We use the Schwinger-Keldysh finite-time formalism applied to an interacting
scalar field theory to derive perturbative expressions detailing the system which exists during
the initial stages of a high energy collision. Further, we define the QFT conditional expectation
value in an effort to describe the initial conditions associated with jet production in heavy ion
physics.

In this paper we calculate 〈φ〉(x) for a scalar Yukawa model, demonstrate the finiteness of the
energy momentum tensor for λφ4 to leading order, and derive an expression for the conditional
expectation value of operators to aid in the description jet-like behaviour in interacting theories.

1. Introduction
AdS/CFT computations have been used to describe the energy loss of QCD-like particles moving
through a strongly coupled plasma[1, 2], but little is understood regarding the initial conditions
of these jets. The intention of this research is to understand the behaviour of particles in an
interacting theory as a function of spacetime, during the initial moments after a high energy
collision. Asymptotic freedom in QCD suggests that a perturbative approach with weak coupling
will be well justified in this regime. A natural object to study is the expectation value of the
energy momentum tensor. This can be done in the Schwinger-Keldysh formalism, matching the
full interacting theory states to asymptotically free states at t = ∞ in the interaction picture.
We will refer to these asymptotic states as |in〉 states. For some operator Ô(t, ~x) the expectation
value is given by

〈ÔHeisenberg〉(t) = 〈T−→ exp

i t∫
−∞

dz1 Ĥ
−
I (z1)

ÔI(t)T←− exp

−i t∫
−∞

dz1 Ĥ
+
I (z1)

〉 (1)

The operator here is spacetime dependent, and so information regarding the evolution of the
system can be retrieved. The “+” and “−” superscripts are used to disintguish the Hamiltonians
of the time ordered and anti-time ordered exponentials, but the same Hamiltonians are used.
It can be shown that this object is equivalent to the contour ordered exponential

〈TC

e−i ∞∫−∞ dz1 (Ĥ+
I (z1)−Ĥ−I (z1))

ÔI(t)

〉, (2)

where TC is the contour ordering operator which orders the fields by their position along the
Schwinger-Keldysh contour given below.1

1 The superscript + indicates a field on the top path of the contour, which will be evaluated before any field
with index − which is located on the bottom path.
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Figure 1: Time evolution indicated by the Schwinger-Keldysh contour.

This system can be solved in a similar way to usual diagrammatic calculations, now with
four possible propagators due to contractions between “ + ” and “ − ” field operators. For
some field φ(x) the contour ordered contractions 〈0|TC{φi(x1)φj(x2)}|0〉 will give propagator
contributions of the form

Dij(x1, x2) =


〈0|T←−{φ(x1)φ(x2)}|0〉 if i, j = +,+

〈0|{φ(x2)φ(x1)}|0〉 if i, j = +,−
〈0|{φ(x1)φ(x2)}|0〉 if i, j = −,+
〈0|T−→{φ(x1)φ(x2)}|0〉 if i, j = −,−

Important relations DR(x1 − x2) =
∑

m={+,−}
mD+m(x1, x2) and

∑
n,m={+,−}

nmDnm(x1, x2) = 0

can be derived through this definition.

2. Expectation of φ(x)
To gain an intuition for spacetime dependent Schwinger-Keldysh calculations, we find 〈φ(x)〉.
For now we will drop the TC path ordering operator and assume that every expectation value
is contour ordered. First we note that 〈in1|in2〉 ∼ δin1,in2 in Schwinger-Keldysh, which can be
seen by finding the expectation of the identity operator. In general we can choose the operator
Ô to be evaluated on the + or − contour without changing the result. Choosing φ(x) on the +
contour, we will have

〈φ(x)〉Heisenberg =
∞∑
n=0

(−i)n

n!
〈φ+(x)

n∏
i=1

∑
mi={+,−}

miH
mi〉interaction (3)

If we choose the incoming states to be the same |in1〉 then contracting φ(x) with an external
state will allow us to factorize the operator out. Thus the rest of diagram will depend on the
expectation 〈in1|I|in2〉 with |in1〉 6= |in2〉. Thus these diagrams will contribute 0, and φ(x) will
only contract with φ(zi) operators from the interaction Hamiltonians.

We will chooseHmi =
∫
d4z

(
gψφψmi − δgψφψmi + 1

2ψ
(
δψ∂

2 − δmψ
)
ψmi + 1

2φ
(
δφ∂

2 − δmφ
)
φmi

)
.

The counter terms here simply cancel the divergences that come from the loop integrals, so we
will not consider their effect in too much detail. Focusing on the gψφψmi term, we explicitly
write out the possible contractions.

〈φ(x)〉Heisenberg =

∞∑
n=0

(−ig)n

n!
〈φ+(x)

∫
d4z1...d

4zn
∑

mi={+,−}

m1ψφψ
m1 ...

∑
mn={+,−}

mnψφψ
mn〉

=
∞∑
n=0

(−ig)nn

n!

∫
d4zn〈

∑
mn={+,−}

mnφ
+(x)φmn(zn) (ψψmn(zn))

n−1∏
i

∫
d4zi

∑
mi={+,−}

miψφψ
mi〉

= (−ig)

∫
d4z

 ∑
m={+,−}

mD+m(x, z)

 ∞∑
n=0

(−ig)n−1

(n− 1)!
〈(ψψm(z))

n−1∏
i

∫
d4zi

∑
mi={+,−}

miψφψ
mi〉

= (−ig)

∫
d4z

 ∑
m={+,−}

mD+m(x, z)

 〈ψψm(z)〉Heisenberg
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Including the counter terms in this analysis gives us the same result, now with all loop
contributions being renormalized. 〈ψψm(z)〉Heisenberg is just the expectation value of some
operator. It does not matter if this operator is evaluated on the + or − contour, the answer
will be the same through the m sum.

〈φ(x)〉Heisenberg = (−ig)

∫
d4z

 ∑
m={+,−}

mD+m(x, z)

 〈ψψ(z)〉Heisenberg

= (−ig)

∫
d4z DR(x− z)〈in|ψψ(z)|in〉Heisenberg

2.1. Leading order emission from a single particle
The above result will hold in arbitrary dimensions.

〈φ(x)〉 = −ig
∫
dn+1z DR(x− z)〈ψψ(z)〉 (4)

Notice that this is the solution to the equations of motion given by classically coupled Lagrangian
L = 1

2∂µφ∂
µφ− 1

2m
2
φφ

2− gφ〈ψψ〉. In general if we are able to determine the expectation 〈ψψ〉,
we will have this expectation exactly. This gives this quantity the interpretation of being a
propagation of the φ field from the current given by the expectation of the square of the ψ.
In weak coupling this case be considered as a statistical ensamble of the possible virtual/real
particles off which the φ field can be emitted.

Suppose we have |in〉 = |ψ〉. To leading order we will find 〈ψ|ψψ|ψ〉(z) = 2〈ψ|ψψ|ψ〉(z)
Using wavepackets ψ̃(k) we can represent the asymptotic states as

|ψ〉 =

∫
dnk

(2π)n/2
√

2Ek
ψ̃(k)|~k〉. (5)

with normalisation condition
∫

dnk
(2π)n |ψ̃(k)|2 = 1. We find

〈ψ|ψψ|ψ〉(z) =

∫
dnk1d

nk2

(2π)n
√
Ek1Ek2

ψ̃(k1)ψ̃∗(k2)e−iz(k1−k2). (6)

Then by substituting the above expression into equation 4, representing DR(x − z) in Fourier
space and integrating over the z co-ordinates we find

〈φ〉(x) = g

∫
dnk1d

nk2

(2π)n
√
Ek1Ek2

ψ̃(k1)ψ̃∗(k2)
e−ix(k1−k2)

(k1 − k2)2 −m2
φ + iε(k0

1 − k0
2)
. (7)

For an analytic result we take ψ̃(k) = (2π)n/2

(2πα2)n/4
e−

1
4

(~k)2/α2
Effectively there is only a significant

contribution to the integral when ~k2
1 + ~k2

2 << α2. As α → 0 the wavepackets become sharply
peaked and this becomes a smaller region. If mψ >> α2 then Eq ≈ mψ through the integral.2

Therefore we have that

〈ψ|ψψ|ψ〉(z) ≈ 1

mψ
|
∫

dnk

(2π)n/2
ψ̃(k)e−i~z

~k|2 =
1

mψ
|ψ̃(~z)|2 (8)

Note that where the time is small in comparison to mψ, the time dependence drops out of the
expression. We are left with a static, stable source over this time interval. Thus

〈φ(x)〉 ≈ −i g
mψ

∫
dn+1z DR(x− z)|ψ̃(~z)|2. (9)

2 This argument will hold true for any peaked wavepacket with width parameterized by α.
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(a) Comparison between numerical and analytic
results for 〈φ(x)〉 for large mψ

(b) Time evolution of 〈φ(x)〉

Figure 2: Plotted expectation values in 1+1 dimensions

For our chosen wavepackets, |ψ̃(~z)|2 = 2n
√

2πα2
n
e−2α2~z2 . Making the substitution 2α2 = 1

4τ ,
choosing n = 3 and integrating the expression over z0, we will find

〈φ(x)〉 ≈ (2π)3 g

mψ

∫
d3z

e−mφ|~z|

4π|~z|
e−

(~z−~x)2
4τ

√
4πτ

3 (10)

We can think of this as the solution of the heat equation with initial condition given by
e
−mφ|~x|

4π|~x| , the Yukawa potential. τ is some function of the width of the asymptotic wavepackets,

as we localize this momenta (or spread out the concentration of the source in position space)
we smear out the concentration of 〈φ(x)〉 given at the origin. For non-zero τ this contribution
will be finite. Similar arguments will hold in arbitrary dimensions. Far from the origin the
“diffusion” has not yet had a noticable effect, and the result will approach the Yukawa potential
(which is exact limit τ → 0). In n = 1 the result can be written in closed form

〈φ(x)〉 ≈ g

mφmψ

π

2
e
m2
φ

8α2

(
e−mφ|~x|Erfc

(
mφ − 4|~x|α2

2
√

2α2

)
+ emφ|~x|Erfc

(
mφ + 4|~x|α2

2
√

2α2

))
. (11)

Figure 2 gives the plotted numerical results in 1 + 1 dimensions.

3. Brief look at the improved energy momentum tensor
In general, expecations of operators in QFT are not finite, and in particular 〈Tµν〉 =
〈
∑
i
∂µφi∂νφi − gµνL〉 diverges order by order even after standard renormalization techniques.

One must instead compute the improved energy momentum tensor[3] 〈Θµν〉 = 〈Tµν〉 +
〈14

n−2
n−1

(
kµkν − gµνk2

)
〉 for a quantity that is finite to at least one loop order.3 Notice that this

quantity is still satisfies ∂µΘµν = 0ν and will produce the same result as Tµν when integrated
over all space.

Consider scalar λφ4 theory with |in〉 = |φ〉. The divergent contribution (when Θµν is
evaluated on the “ + ” contour) is given exclusively by the time ordered propagators, so we
will ignore all other contributions when showing finiteness. Define Mµν as the sum of all time
ordered momentum space diagrams contributing to 〈Θµν〉 at order λ. Then we can find

Mµν = 24iλ

∫
ddq

(2π)4

(q − k)µqν − 1
2gµν((q − k)q −m2) + 1

4
n−2
n−1(kµkν − gµνk2)

((q − k)2 −m2)(q2 −m2)
(12)

3 n here is the number of spatial dimensions.
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With k = k1− k2 being the difference in momenta of the bra and ket asymptotic states, and m
the mass of the φ field. Working through this expression we can find the divergent part to be
given by

24λ

(4π)d/2

1∫
0

dx

((
x(1− x)− 1

6

)
(kµkν − gµνk2)

)
1

2− d
2

= 0. (13)

Thus we can make sense of the Θµν operator to leading order in λ.

4. Conditional Expectation Value
To understand the improved energy momentum tensor 〈Θµν〉(x) for a jet we propose choosing
an initial state of two particles. After a two-particle collision, an infinite number of final states
are kinematically accessible. Thus 〈Θµν〉 will be some average value of these possible states. To
restrict this expectation value with additional information we define the conditional expectation
value. This is the expectation given both initial and final states.

4.1. Derivation
Let rn be an eigenvalue of the operator R̂ and ∆ a set of some of these eigenvalues. The
probability that a measurement of R̂ on some state will yield rn is 1, what is the probability
that it will yield rn ∈ ∆? We define

MR(∆) =
∑
rn∈∆

|rn〉〈rn| (14)

This is the projection operator onto states given by ∆. Define density matrix ρ =
∑
b

ρb|b〉〈b|

with property
∑
b

ρb = 1. The probability that a measurement will yield a result in ∆ is the

average value of the projection operator. This can be motivated by noting that if ∆c is a
complete set, MR(∆c) = 1. Then Tr{ρMR(∆c)} = 1. If ∆ is a smaller subset, the expectation
of this operator now excludes the contribution from the missing states. Thus we say that

P ({R ∈ ∆}|ρ) = Tr{ρMR(∆)} (15)

We now want to consider two observables Q and R represented respectively by operators Q̂
and R̂ with eigenvectors given by |qn〉 and |rn〉 with qn ∈ Γ and rn ∈ ∆.

To define the conditional probability, to need to know the probability that a state
corresponding to qn ∈ Γ will be measured, given that a state corresponding to rn ∈ ∆ has
been measured. This is simply

P ({Q ∈ Γ}|ρ̃) = Tr{ρ̃MQ(Γ)} (16)

where ρ̃ is the state of the system after a measurement of R̂. How do we find ρ̃? If a state ρ̃ is
such that a measurement will yield rn ∈ ∆ with certainty, then ρ̃ ∼MR(∆)ÂMR(∆). Enforcing

that Tr{ρ̃} = 1 provides a normalization of Tr{MR(∆)ÂMR(∆)}.
Suppose we collapsed the state into ρ̃(0) immediately after preparing the state in ρ(0). Then

we would find Â = ρ(0). Define ρ̂(t) as the time evolved ρ̂(0) state. Then

ρ̃(t) =
MR(∆)ρ̂(t)MR(∆)

Tr{MR(∆)ρ̂(t)MR(∆)}
=
MR(∆)ρ̂(t)MR(∆)

Tr{ρ̂(t)MR(∆)}
(17)

where we have used the cyclicity of the trace and the fact that MR(∆) is a projection operator.
Now we can write

P ({Q ∈ Γ}|ρ̃) =
Tr{MR(∆)ρ̂(t)MR(∆)MQ(Γ)}

Tr{ρ̂(t)MR(∆)}
=

Tr{ρ̂(t)MR(∆)MQ(Γ)MR(∆)}
Tr{ρ̂(t)MR(∆)}

. (18)
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This is the conditional probability that a state corresponding to qn ∈ Γ will be measured, given
that a state corresponding to rn ∈ ∆ has been measured.

The conditional expecation value of an operator Θ̂ is defined

E(Θ̂, {R ∈ ∆}|ρ) =
∑
qn∈Γ

ΘqnP (Q ∈ {qn}|ρ̃) (19)

the sum of the eigenvalues Θqn of Θ̂ weighted by the conditional probability. For Θ = 1 this
reduces to E(1, {R ∈ ∆}|ρ) = P (Q ∈ Γ|ρ̃) as expected. We will take Γ to be a complete set so

that any eigenvalue of Θ̂ is accessible.
We can write Θ̂ =

∑
qn∈Γ

Θqn |qn〉〈qn|, allowing us to express the conditional probability as

E(Θ̂, {R ∈ ∆}|ρ) =
∑
qn∈Γ

Θqn

Tr{ρ̂(s)MR(∆)|qn〉〈qn|MR(∆)}
Tr{ρ̂(s)MR(∆)}

=
Tr{ρ̂(s)MR(∆)Θ̂(t)MR(∆)}

Tr{ρ̂(s)MR(∆)}
(20)

For the situations in which we are interested, we will set s = ∞ (the time at which the state

MR(∆) is measured). We can consider Θ̂ to be given at some arbitrary time t because we
have used a general eigenbasis given by |qn(t)〉. Writing the density matrix in terms of some
wavefunction for the system we will have

E(Θ̂, {R ∈ ∆}|ρ) =
〈Ψ|MR(∆)Θ̂(t)MR(∆)|Ψ〉(s)

〈Ψ|MR(∆)|Ψ〉(s)
(21)

For an interacting theory, this expectation value can again be related to the asymptotic free
field eigenvectors through the interaction picture, and perturbation theory can be done in the
usual way. The new contour is given by figure 3.

Figure 3: Time evolution indicated by a modified contour with various measurements

5. Conclusion
We have made progress towards building a spacetime description of phenomena in quantum
field theory. We have found 〈φ(x)〉 to leading order for a simple scalar Yukawa theory, deriving
an approximate analytic result. From this an approximate expression for the energy momentum
tensor can readily be obtained.

Attempting to calculate 〈Tµν〉 results in divergences that can not be absorbed by standard
counter terms in a general quantum field theory. In order to account for these divergences an
improved energy momentum tensor Θµν can be defined. We have briefly demonstrated that one
can compute such an object in λφ4 theory.

We have defined the conditional expectation value within the context of quantum field theory.
To extend this work we intend to calculate the conditional expectation value of Θµν given a
simple ψψ → ψψ scalar particle collision. We believe that this can be used to derive the energy
density distribution as a funstion of spacetime for jet-like structures in the perturbative regime.
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