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Abstract. Regular languages are languages recognised by finite automata; automatic
structures are a generalisation of regular languages where one also uses automatic relations
(which are relations recognised by synchronous finite automata) and automatic functions (which
are functions whose graph is an automatic relation). Functions and relations first-order definable
from other automatic functions and relations are again automatic. Automatic functions coincide
with the functions computed by position-faithful one-tape Turing machines in linear time. This
survey addresses recent results and open questions on topics related to automatic structures:
How difficult is the isomorphism problem for various types of automatic structures? Which
groups are automatic? When are automatic groups Abelian or orderable? How can one overcome
some of the limitations to represent rings and fields by weakening the automaticity requirements
of a structure?

1. Introduction

Automata theory [13] deals to a large extent with finite automata. These devices process an
input symbol by symbol and have a finite memory which they update in reach round of processing
an input symbol; the memory also indicates whether the word — as seen so far — satisfies the
condition to be checked. For example, the well-known algorithm to check whether a number is
a multiple of 3 consists of adding up each digit one after the other and in between only to store
the remainder by 3; thus the memory consists only of taking one of the choices 0, 1 and 2. If
after the processing, the result is 0 then 3 divides the number just processed. So one can write
the algorithm as a table or diagramme of its states and the memory transitions on each input
symbol.

state | type succ at 0,3,6,9 | succ at 1,4,7 | succ at 2,5,8
0 start, accepting | 0 1 2
1 rejecting 1 2 0
2 rejecting 2 0 1

For example, when processing input 22876, the automaton is initially in the state 0, after reading
the first 2 in state 2, after reading the next 2 in state 1, after reading the 8 in state 0, after
reading the 7 in state 1 and after reading the 6 in state 1; thus the number is not a multiple
of 3 and the input is “rejected”. Such mechanisms allow to check various properties of integers
x (given as sequences of their decimal digits): does = have remainder a when divided by b (for
constants a, b); does = have an even number of decimal digits; does x have exactly five decimal
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digits with value 3; is « the sum of two powers of 107 One can also make easy syntactic checks
and also process other information than numbers.

This concept of a finite automaton turned out to be very fruitful in the theory of computation
and is also used in many applications: mainly due to the fact that it is though primitive still quite
expressive and that automata can be compared and manupulated easily by computer programs
without running into decidability-problems.

Important mathematical concepts are often independently discovered by various researchers
at various places in the world. For example the concept of a 0 is due to Indian mathematicians as
well as to mathematicians of the ancient Maya population in Mezoamerica. Similarly, automatic
structures which are applying automata theory to algebraic structures were formalised and
developed independently by three groups of researchers: The first work is due to Hodgson
[11, 12]; the second team of researchers where Khoussainov and Nerode [16] and the third team
of discoverers are Blumensath and Gréadel [4, 5]. These teams all spotted the natural idea to
carry over the ideas of automata theory from sets to relations and functions; all teams also had
in common the idea of going a more restrictive path compared to the alternative path of finite
transducers and rational relations and functions [3]; one of the reasons for their choice is to
maintain the decidability of the first-order theory of the so defined structures what is not the
case for finite transducers and their structures. Khoussainov and Minnes [15] as well as Rubin
[22] provide surveys about automatic structures.

There are several equivalent though similar approaches to formalise automatic relations:
One way is to consider a finite automaton reading in parallel several input-words, each
word by one symbol in each step, where exhauseted input-words provide a special symbol
# from outside the alphabet; the automaton accepts iff it is in an accepting state after
having processed all the tuple of inputs not entirely consisting of #. The second approach
makes this a bit more implicit: One first defines the convolution of several strings and then
says that a relation R of several, say three, inputs is automatic iff the set {conv(z,y,z) :
(x,y,z) € R} is regular. Here the convolution of strings combines the symbols of z,y,z at
the same position into a new character from the convoluted alphabet where, again, exhausted
strings are coded using a special symbol like #. For example, conv(0010,0123456,¢) =
(0,0,40),(0,1,#),(1,2,#),(0,3, %), (#, 4, #), (.5, #), (#,6, #).

For automatic functions one can either define that their graph is an automatic function
or one can say that there is a non-deterministic automaton which reads from each input one
symbol in each round and produces for each output one symbol in each round and which
goes into an accepting state after all inputs and outputs have become a #; such a function
must be unique in the sense that no tuple of inputs has two different tuples of output; due
to the pumping lemma it therefore holds that there is a constant ¢ such that no output
can be longer than n + c if the longest member of the input tuple has length n. Here non-
determinism is essential, as certain automatic functions cannot be computed by a deterministic
finite automaton. An example of such a function is the function which exchanges the first and
last symbol: ajasas...a,—1a, — apagas...a,—161: when processing a;, the automaton guesses
and memorises a,, and outputs it; it then reads and copies as, ..., a,—1 until — when receiving
the input a, — it non-deterministically outputs a; and compares checks that the swap of ay
and a, was executed correctly. If so the dfa goes into an accepting else into a rejecting state;
if symbols different from # follow after this swap then the automaton goes into a rejecting
state forever and invalidates the complete computation. Brough, Khoussainov and Nelson [7]
studied the more restrictive model of automatic functions computed by a dfa in this way and
the corresponding structures.

In general, a structure (A4, f1,..., fn,71,- .., 7m) of n functions and m relations is automatic iff
A is a regular set and f1, ..., f, are automatic functions and ry, ..., r,, are automatic relations.
Here the domains of these functions and relations are either A or, for some k, the k-fold Cartesian
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product {conv(z1,x2,...,Tk) : T1,%2,...,T, € A}. Furthermore, to simplify notation, one also
calls structures which are isomorphic to automatic structures just “automatic”.

Normally one assumes that the inputs in automatic relations of structures have a joint begin
and end depending on the string-length; one can also code structures such that they have an
aligned middle (say the position whether the dollars are separted from the cent) and then the
numbers start somewhere (after perhaps some #) and end somewhere (with trailing #). This
second presentation is in some cases useful and can be mapped, by coding, back to the first
one. One can show that, for example, the structure of positive finite fractional decimal numbers
(some digits before and some digits after the decimal dot, but not an infinite sequence of digits)
with addition and < form an automatic structure. For example, given three numbers x, ¥, z, an
automaton to check whether 4+ y = z would process from the back to the front and the states
would be “correct and carry to next digit (c)”, “correct and no carry to next digit (n)” and
“incorrect (i)”:

Correct Addition Incorrect Addition Missing Leading Digit
#2358.225 3333.33#%# 123.456
#9112 . #+## ##22.222 987 .654
11470.225 #155.552 111 11 4#
ncnncnnnnan iinnnnnnn cccccccn

In these three examples, x stands in the top, y in the second and z in the last row. The states
of the automaton are from the back to the front, they have processed the digits behind them
but not those before them. The filling symbol # is identified with 0. As long as all dots are
aligned, they are just ignored by the automaton and do not cause a state-change. The state “n”
is the starting and accepting state, the state “c” can go to an accepting state if the next column
is correctly aligned. Once a state “i” is reached, the automaton will reject the computation as
incorrect, independently of what will come next. One can also easily make an automaton which
goes from the front to the back and compares two numbers and which ends in an accepting state
whenever the first number is larger than the second.

This concept can easily be generalised to deal with other digit systems (like binary) or to
deal with positive and negative numbers (including 0). Similarly the integers with addition
and < form an automatic structure. One can also combine both structures by having an extra
predicate which tells whether a number is an integer, that is, has no nonzero digits after the
decimal dot. These type of structures are, roughly, the most complicated subgroups of the
rationals which are automatic; in particular Tsankov [24] showed that the structures of the
rationals with addition itself is not automatic. Other non-automatic structures are the ring of
integers (Z, +, -), any infinite field and the free group generated by two or more generators. Finite
structures as well as their eventually constant sequences (which component-wise operations on
these sequences) are automatic. There are infinite automatic rings: Taking a finite ring (R, +, ),
one now considers (R, +,) to be the set of all eventually constant sequences apajas ... with
component-wise operations: (a+b)y = ag + by, (a-b)r = ay - bi. Such a sequence agaiasg ... can
be represented by the shortest prefix aga; ... a, such that a,, = a, for all m > n in order to get
a finite representation. In the following, a few topics on automatic structures will be highlighted
more: The characterisation when a function is automatic, orderings, groups, ordered groups,
semiautomatic structures.

2. Characterising Automatic Functions

Turing [25] developped a machine model which — now named after him — became a basic model
for computations in complexity theory, as it permitted to formalise complexity classes in an easy
and clear way. A one-tape Turing machine is a Turing machine which has finitely many states
(like a finite automaton) and which has a read-write-head on a tape of symbols where, in each
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step, depending on the symbol and the state, it replaces the current symbol by a new one, it
updates to a new state and it moves the tape by —1, 0 or +1 positions. A position-faithful
Turing machine has on the tape a start-position with a special symbol which it never crosses.
The input is written initially starting after this start-position and the computation replaces it
by the output starting also after this start-position. After the end of the input / output are
on the tape only blanc symbols which are not used for any other purpose. The run-time of
the Turing machine is the number of steps it uses to convert the input into the output; “linear
time” means that there is a constant ¢ such that the machine runs on input of length n for
at most (n + 1) - ¢ steps and has then replaced the input by the output and reached a halting
state after which it does not carry out any further activity. Note that a Turing machine can
use an alphabet much larger than just the alphabet used for input and output; these additional
symbols might be used to store some data on the tape. This is essential for the theorem below.
Furthermore, a Turing machine is deterministic iff it in each situation can do only one activity
and there is no choice between several alternatives how to proceed. A non-deterministic Turing
machine, however, can choose between several alternatives and those can lead to various runs;
as different runs might result in different output, the machine might do at the end some checks.
In the case that the checks go through, the machine goes into a special “accepting halting state”
and the computation is valid; in the case that the checks do not go through, the machine goes
into a special “rejecting halting state” and the computation is invalid. For the same input, all
valid computations have to give the same output; furthermore, in the case of a time-bound, all
computations, whether valid or invalid, have to keep this time-bound, that is, must terminate
within (n+1)-c steps for a linear-time Turing machine and input of length n. The next theorem
gives a Turing machine characterisation of automatic functions — here with one input mapped
to one output; if several inputs or outputs are involved, one has to reduce them to one by using
convolutions.

Theorem 2.1 (Case, Jain, Seah and Stephan [8]). For a function f from strings to strings,
the following conditions are equivalent:

e f is automatic;
e f is computed in deterministic linear time by a position-faithful one-tape Turing machine;

e f is computed in mon-deterministic linear time by a position-faithful one-tape Turing
machine.

This result works for deterministic and non-deterministic linear time. It would be interesting
to know whether it also works for position-faithful machines using alternating linear time; here
the alternating machine first would write non-deterministically the output onto the tape which
consists of at each time of a convolution of three words (z,y, z) where x is the input, y is the
guessed output and z is some work-content; in the case that the machine accepts the pair (x,y)
according to the convention of alternating Turing machines then y is a valid output. Furthermore
the machine is required to keep the time-limit on all computation pathes involved, even on those
for wrongly guessed output.

Note that in Theorem 2.1, the notion of position-faithfulness is needed. To see this consider
the function which erases all leading 0 of binary strings, that is, which maps z1ly to 1y and z
to € for z € 0* and y € {0,1}*. This function can be computed by a one-tape Turing machine
which is not position-faithful; however, the function is not automatic as the corresponding
position-faithful Turing machine would have to move a large amount of information by a non-
constant amount of cells. Similarly, two-tape Turing machines can in linear-time do things which
automatic functions cannot do, for example to realise the above movement of cells, thus also
those are more powerful than automatic functions.
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3. Decidability Questions

One important property of automatic structures is that one can use first-order logic to define
new relations and functions from given automatic relations and functions; this construction is
effective and hence one can even use the well-known automata-theoretic tools in order to decide
whether a subset of the domain of an automatic structure defined such a way is empty, finite or
coincides with the domain. This permits to decide the first-order theory of a given automatic
structure [16]. An application is to get an alternative proof of the decidability of Presburger
arithmetics (first-order formulas on the integers involving addition and order) and on the other
hand, one also knows that structures with undecidable first-order theory are not automatic.
Another important question is the question whether one can effectively decide whether two
automatic structures are isomorphic. This is in general impossible, but for some special cases,
it is possible: One can decide whether two automatic Boolean algebras are isomorphic and one
can decide whether two automatic ordinals (viewed as regular sets of lower ordinals with the
corresponding automatic order-relation) are isomorphic [22]. This stands in contrast with the
following results.

Theorem 3.1 (Kuske, Liu and Lohrey [17]). It is impossible to decide whether two given
automatic structures are isomorphic for the following types of automatic structures:

o [t is TIY-complete to decide whether two automatic equivalence relations are isomorphic;

o [tis E%—complete to decide whether two automatic linear orders are isomorphic.

These and similar results show that only few families of structures have a decidable isomorphism
problem. Barany asked whether the following family of structures has a decidable isomorphism
problem, where succ is the successor function on the natural numbers and A, B C N (in the
corresponding representation).

Question 3.2 (Barany [6]). Given two structures (N, A, succ) and (N, B, succ), can one decide
whether the structures are isomorphic, that is, whether A = B?

A further natural question is on how difficult it is to know whether a given structure (described
by computer programs computing the corresponding operations) has an automatic copy which
is isomorphic to it.

Question 3.3 (Kuske). Given a recursive structure by Turing machines or computer programs
deciding the domain and relations and graphs of functions involved, is it a ¥1-complete problem
to decide whether the so-described structure is isomorphic to any automatic structure?

As the corresponding isomorphism problem is Z%—complete, this problem might also be a
candidate for this complexity level.

4. Groups
Groups have been studied under various constraints of automaticity. One of the first frameworks
to study groups within automatic structures is the approach by Epstein et al. [10] who taylormade
their definition in order to capture a large class of finitely generated group while maintaining
a natural coding of the representatives of the group elements. Their approach is orthogonal to
the automaticity notion of Khoussainov and Nerode [16], though automaticity by the latter on
finitely generated groups implies automaticity by the first, however the concept of automatic
groups by Khoussainov and Nerode works also for groups which are not finitely generated. In the
present paper, “automatic” always means “automatic as defined by Khoussainov and Nerode”;
the reader should be aware that also Epstein et al. [10] call their groups just “automatic”.
Recall that a group is a set with a binary operation such that this operation is associative,
that there is a neutral element and that every member of the group has an inverse; groups are
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quite common in mathematics with the integers (Z, +), rationals (Q, +) and reals (R, +) being
examples for infinite groups. Such groups where x + y = y + z for all x, y are called Abelian or
commutative. There are also a multitude of finite groups. When these groups are small, they
can be given by a table as in these examples (addition modulo 4, multiplication modulo 5 of
non-zero numbers, double-bit exclusive or):

+]10 1 2 3 -1 2 3 4 @ |00 01 10 11
0j]0 1 2 3 111 2 3 4 00|00 01 10 11
111 2 3 0 212 4 1 3 01|01 00 11 10
212 3 0 1 313 1 4 2 10 {10 11 00 O1
313 0 1 2 414 3 2 1 1111 10 01 00

Groups do not need to be Abelian. For example, the group of permutations of members of a set
X with at least 3 elements has the group operation o with (f o g)(x) = g(f(x)) for all z € X.
This group is not Abelian; in the case that X is finite, also the group of permutations of X is
finite. All finite groups are automatic.

A group is called Abelian-by-finite iff it has a subgroup of finite index which is Abelian.
Finitely generated automatic groups are closely related to those which are Abelian-by-finite
and to a certain degree, one can also say something about groups which itself are not finitely
generated.

Theorem 4.1 (Oliver and Thomas [21]). A finitely generated group (G, o) is automatic iff it
1s Abelian-by-finite.

Theorem 4.2 (Nies and Thomas [20]). If (G,0) is an automatic group then each finitely
generated subgroup is Abelian-by-finite.

These results can, for example, be used to show that Thompson’s group F' is not automatic (in
the sense of Khoussainov and Nerode); a famous open problem [1] is whether F' is automatic in
the sense of Epstein et al. [10].

Example 4.3. Thompson’s group F' is given by generators xg, x1, . . . satisfying ,xmy = tmTni1
whenever m < n. Hence x1(x9)"” = (20)"@n+1 and zpy1 = (x0) "x1(x0)", thus Thompson’s
group F' is finitely generated. Thompson’s group F' can indeed be described by only finitely
many equations:

(o) a120) © (027 ");
z1(20)?) = ((zo0) *z1(w0)?) 0 (woxy ).

(woxy ") © ((z0

(w07 ") o ((20)

~—
|
—_
8
[y
8
N O
~—

So it is a finitely presented group. Now Thompson’s group F' is not Abelian-by-finite: Assume
by way of contratdiction that F' has an Abelian subgroup K of finite index k. Then for every
y € F, two powers 4,47 with 1 <i < j < k+1 go into the same set of the form zK where z € F
— index k means that there are only k of these sets. Then ¢’ = zv and 3/ = 2w for v,w € K
and y~" =vloz lozow=v"ltowe K. So y* € K for every y € F. In particular, (x1)*
and (z9)® are in K and

(@r141)™ = (o) a1 (20)™)* = (20) ™ o (21)" o (o) = (a1)"
what contradicts known facts about this group: The k!-th powers of different z; and z; are
different. Hence Thompson’s group F' is not automatic.
Two important questions related to automatic groups are still open.
Question 4.4 (Nies [19]). Is there an infinite and simple automatic group?

Question 4.5 (Nies [19]). Is every torsion-free automatic group Abelian-by-finite?
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Here a simple group is a group (G, o) which does not have a proper subgroup H of at least two
elements such that x o H = H o x for all x € G. Infinite Abelian groups are never simple.

A group (G, o) with neutral element e is torsion-free when zox, xozox, ... are all different
from e for every z € G — {e}. Note that in Nies’ question the restriction to “torsion-free” is
needed; for example if one takes a finite group which is not Abelian (like the permutation group
of a set with 3 elements), then one can just consider all functions f from N into this finite group
which are eventually constant with a component-wise operation for each member; this group is
also automatic, but not Abelian-by-finite.

The above questions mainly asked on how to describe the automatic groups; an important
and well-known question is also on when two automatic groups are isomorphic. In particular,
the question whether one can decide the isomorphy of Abelian automatic groups.

Question 4.6. Is there an algorithm which decides whether two given automatic Abelian groups
are isomorphic?

Given a group (G, o), one can fix a subset F' C G of generators of G and consider the edge set
E = {(z,y) € G:3z € Flroz = y]}. Such a graph is connected. Furthermore, the graph
is transitive, that is, for every z,y € G there is a graph-isomorphism which maps (G, E) to
itself and maps z to y. Berdinsky and Khoussainov [2] investigated connected and transitive
automatic graphs and showed that some of them are not derived from a group in the above
mentioned way.

5. Groups and Order

An important topic is to combine groups with orders. There are two notions: the ordered
automatic group which satisfy both implications x < y = xoz < yoz and x < y = zox < zoy for
all z,y, z and the right-ordered / left-ordered groups which satisfy only the respective condition.

Theorem 5.1 (Jain, Khoussainov, Stephan, Teng and Zou [14]). Ewery automatic ordered
group is Abelian, even if only the group operation and not the ordering is automatic. However,
there is a non-Abelian left-ordered group.

This non-Abelian automatic left-ordered group is the Klein bottle group with two generators
a,bwhere aob=b"1oa and a't/ < a?b" iff i < or (i =i’ and j < j'). It should be noted that
there are many ways to introduce an order on (Z?, +) and one would be to choose real numbers
a,b and to look at the ordering which a - Z + b - Z inherits from the real numbers. The next
result shows that there are non-trivial choices where the resulting ordered group is automatic.

Theorem 5.2 (Jain, Khoussainov, Stephan, Teng and Zou [14]). For every square-root \/n of a
non-square natural number n, the ordered group (Z++/n-Z,+,<) with the ordering < inherited
from the real numbers is an automatic ordered group where both, + and <, are automatic.

The following arguments give an idea on how to prove the automaticity of (Z + /3 - Z, +, <);
this case is easier than many others. Choose a real number u = 2+ /3, this number is a member
of the given group and satisfies u?> = 4u — 1. Now one represents every member of the group by
a polynomial of the form

anu +ap 1" V. tautartau o a_pu™

where a; € {-3,-2,—1,0,1,2,3} for all k. These polynomials are always members of the
group: By uf*t! = 4uF — u*~1, it follows from u*~!,u* being in the group that also v**! is in
the group and from u*, ©**1 being in the group that also «*~! is in the group. As u° =1 and
u are in the group, one can then conclude using induction that also all larger and all smaller
powers of u are also in the group. Furthermore, due to replacing each 4u* by v**! + «F~1 and

—4uF by —uF*tt — 41 until no coefficient has an absolute value above 3, one can reduce every
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polynomial into this form without changing the value it represents; the process terminates as
every replacement reduces the sum of the absolute values of the coefficients.

Note, that one can check with a finite automaton whether such a polynomial is positive,
negative or equal to 0: Starting in the front, one has two variables v, w initialised with 0. When
processing ay, vu 4w represents a,u"~F D 4+ 4 a,,, and v, w are updated to values v/, w’ by
v/ = 4v+w and w' = —v+ay so that v'u+w' = (vu+w)u+ap = apu™ ¥ 4. .. apyiutag. These
updates are aborted when it is secure that the number is properly positive or properly negative;
this is the case when v'u+w' >3- (1+u ' +u2+..)orvut+w < -3 -(I4+ut+u2+..)
(while vu + w was in the interval). Indeed, one can chose a constant ¢ such that whenever one
of the new values v/, w’ is outside the interval {—c,—c+ 1,...,¢ — 1,¢} for the first time then
vu + w passes the threshold to indicate that the number is positive or negative. Note that when
w' >cthen w <c+3and v <3 —cand v < 4v+w <9 — 3¢ so that vu + w < 6 — 2¢ due
to u > 1. Hence one can argue that whenever one of v/, w’ is out of the range while v, w were
in the range then v’ is out of the range itself and w’ is at most 3 away from the range, thus
v'u+w' is, for ¢ large enough, so large that the sign of v" determines the outcome of the test. In
the case that the threshold is not passed through the whole processing of the polynomial, then
there are only finitely many choices left and a table tells the automaton which of these choices
correspond to a positive number, negative number or to 0.

This key idea can also be adjusted to check whether a sum of two or three polynomials is
0 and so one can compare polynomials or check whether one polynomial is the sum of two
others. Furthermore, using the length-lexicographic ordering permits to identify among the
various representatives for any number in the group a least representative which can be taken
into the domain of the structure.

More precisely, if one has an automatic structure (A,+,<) with = being an automatic
equivalence relation representing equality, then one can make the set B = {x € A : Vy € A
[y = 2 = & <iength—lezicographic Y]} and (B, 4+, <) is then an automatic structure with exactly
one representative for each class of equivalent elements in A. This completes the proof-sketch
that the ordered group (Z + v/3Z, +, <) is automatic.

For the natural numbers, one can define the order from the group operation: =z < y <
Jz[r + 1+ z = y]. Therefore whenever + is automatic, so is <. For the integers, this is
no longer true, leaving the following open question.

Question 5.3 (Jain, Khoussainov, Stephan, Teng and Zou [14]). Is there a automatic copy of
(Z,+) such that the ordering < in this copy is not automatic?

Although this main question is open, there is a related result obtainable by storing fractions
between 0 and 1 with denominators being a power of two and a power of three, respectively, in
different components of convoluted numbers where the first one uses binary and the second one
ternary digits. While an automatic addition can survive this split representation, no automaton
for the order can deal with it. This idea permits to prove the following result.

Theorem 5.4 (Jain, Khoussainov, Stephan, Teng and Zou [14]). There is an automatic copy
of {x-2Y-3*:x,y,2z € Z},+) in which the addition is automatic but not the order.

6. Semiautomatic Structures

Automatic structures are limited in the way that they can neither be used to represent infinite
fields nor some important groups like (Q,+,<). Therefore, efforts have been undertaken to
overcome this problem by making the structures more general. The key idea is to relax the
automaticity requirement on some of the functions and relations involved. Here one says that a
function f is semiautomatic iff every induced function obtained by fixing all but one inputs is
automatic; similarly for relations. One might also consider to allow multiple representatives for
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elements of the structure and only require that each equivalence class in the representation is
regular, but no longer that the equivalence relation induced by the equality of structure elements
is automatic. As one might want to relax this only for some and not all notions, at semiautomatic
structures one separates by a semicolon the automatic relations and functions from those which
are only semiautomatic. An example is the ring (Z, 4+, <,=;-) where the multiplication - is only
semiautomatic while the other operations and relations are automatic; as the equality is only
semiautomatic in some semiautomatic structures, it is here indicated that here the equality is
automatic as well. This structure can be made using any of the usual representations of the
additive groups of integer with order, as the multiplication with a constant ¢ can then be realised
by ¢ times adding the input to 0. Tsankov [24] provides a result which can be formulated as
follows in the language of semiautomatic structures; subrings contain 0,1 and are closed under
addition and multiplication.

Theorem 6.1 (Tsankov [24]). (A, +,<,=;-) is a semiautomatic subring of the rationals iff
A={x-pY:x,y € Z} for somep € {1,2,3,...}; the case p =1 captures the ring of integers.

If one abstains from requiring + to be automatic but only requires it to be semiautomatic, then
one gets quite a multitude of examples of semiautomatic groups.

Theorem 6.2 (Jain, Khoussainov, Stephan, Teng and Zou [14]). The groups (Q,=;-) and
(Q,<,=;+) are semiautomatic.

Furthermore, when allowing that all relations and functions are only semiautomatic, one can
get ordered semiautomatic fields.

Theorem 6.3 (Jain, Khoussainov, Stephan, Teng and Zou [14]). The field (Q++/nQ; +, -, <,=)
1s semiautomatic for every non-square integer n.

However, not every countable structure is semiautomatic. For example, if one looks at
vector spaces of dimension 16 over the vector space of the rationals and postulates that all
linear functions from the vectorspace to itself are automatic, then this structure is automatic,
however, it becomes non-automatic, when the following additional operations are required to be
automatic: inverting one component (mapping z to 1/x for the case that x # 0 and mapping 0
to 0); testing whether the coordinates are actually from Z!6. Note that if one looks just at the
field of rationals itself, then (Q;+,-,/,<,=) and (Q,Z;+, -, <,=) are both semiautomatic. On
one hand, the ways to obtain the two semiautomatic structures use different representations,
they cannot be combined. On the other hand, the result on the non-semiautomaticity of Q'
with the above mentioned operations was proven by coding Matiyasevich’ theorem [18] that it
is undecidable to check whether a polynomial in several integer variables takes the value 0. This
coding cannot be done when using only one in place of 16 dimensions and therefore the question
whether the corresponding structure is semiautomatic is left open, see item (d) below. The other
items also stem from limitations of the known constructions where there is also no known proof
that these limitations cannot be overcome.

Question 6.4 (Jain, Khoussainov, Stephan, Teng and Zou [14]).

(a) Are the structures (Q,<,=;+,-) or (Q,=;+,) semiautomatic?

(b) Is the polynomial ring (Q[z]; +,-, =) semiautomatic?

(c) Is there a transcendental field extension of the rationals which is semiautomatic?
(d) Is (Q,Z;+,—,-, /,<,=) semiautomatic?

7. Conclusion
The present survey gives an overview over various recent results from the field of automatic
structures and also points to open questions which might be interesting for further study.
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These questions include decidability questions of isomorphism problems or, more general, their
complexity in the arithmetical or analytical hierarchy; the question to which extent automatic
groups are Abelian-by-finite and how automaticity of groups relates to the order of these — a
line of research initiated by Nies, Oliver and Thomas in three papers [19, 20, 21] — and on the
general limits of automata-theory when dealing with structures.
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