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Abstract. We present an approach to systematic description and classification of solutions of
partial differential equations that are obtained by means of reduction of these equations to other
equations with smaller number of independent variables. We propose to classify such reductions
by means of classification of reduction conditions. The approach is illustrated by an example of
the system of d’Alembert and eikonal equations. Solutions of this system were used to outline
classification of reductions for the general nonlinear d’Alembert equation, with generalisation
to arbitrary Poincaré invariant equations.

1. Introduction
In this paper we propose a new view to a problem that seemed to be solved long ago – how to
classify solutions of partial differential equations (PDEs), obtained by means of reduction to new
equations with smaller number of independent variables. We will discuss from this point some
well-known methods, such as Lie algorithm of symmetry reduction and various non-classical
approaches.

This paper continues development of ideas presented in the talks at the previous GADEIS
conferences [1–3]. In the papers [1,2] we found and studied reduction conditions of the nonlinear
d’Alembert equations and possible reduced equations. In [3] we considered classification of
equations with respect to their possible reductions.

Here we consider a new idea – classification of reductions of PDEs to new PDEs with smaller
number of independent variables or to ODEs. This idea stems from observation that many
methods for searching of such reductions produce redundant results. A generally accepted
method for classification of symmetry-induced reductions provides for using of subalgebras
inequivalent up to conjugacy (see [4, 5]). First, it is necessary to find the invariance algebra
of the equation under consideration. Subalgebras of Lie algebras can be classified with respect
to conjugacy (see, e.g., [6] for classification of subalgebras of the Poincaré algebra). Then the
original equation can be reduced with respect to each of the obtained inequivalent subalgebras,
and solutions of the reduced equations are constructed. It is usually assumed that this method
gives reductions that are inequivalent.

However, this method may produce the same reduction conditions and whence the same
reductions for different non-conjugate subalgebras, and it does not work well for the general
reductions of PDEs (then we have an arbitrary number of independent variables).

We propose to classify reductions of PDEs by means of symmetry classification of the
reduction conditions. Thus, inequivalent solutions of the reduction conditions will provide
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inequivalent reductions. This way we may obtain fewer reductions than by means of the standard
Lie procedure, cutting some reductions obtainable from subalgebras of the invariance algebra,
and more reductions due to nonclassical reductions if they exist.

The only problem with such equivalence and further classification of reductions – it is very
difficult to solve equations of the reduction conditions. However, in many interesting cases, e.g..
for the general nonlinear d’Alembert equation, it appears possible.

It is worth noting that the direct method presented by Clarkson and Kruskal [7] actually gives
classification of reductions even if it gives no new solutions, though this particular advantage of
their method was not pointed out by its authors.

Previously [8] we presented application of such direct reduction method by means of the
ansatz

u = exp{if(t, ~x )}ϕ(ω)

to the nonlinear Schrödinger equation with an arbitrary function on |u| in the nonlinear part

2iut +4u− uF (|u|) = 0,

where u is a complex valued function, u = u(t, ~x ), is an n-dimensional vector of space variables
~x = (x1, x2, x3), |u| =

√
uu∗, an asterisk designates complex conjugation,

4u =
3∑

a=1

∂2u

∂x2a
, a = 1, 2, 3.

Though no new reductions were obtained as compared to the Lie algorithm, we may see that the
listed reductions are inequivalent with respect to equivalence transformations of the reduction
conditions.

In this paper we present an approach to classification of reductions of the nonlinear
d’Alembert equation with arbitrary number of independent variables

uµµ = F (u). (1)

Here and below the indices mean differentiation with respect to the relevant independent
variables, uµ = ∂u

∂xµ
, uµν = ∂u

∂xµ∂xν
, Greek indices run from 0 to n, Latin indices run from 1

to n and summation over repeated indices is assumed if nothing is indicated overwise. Here we
have n space variables and n+ 1 independent variables.

We consider classification of reductions of the equation (1) to ODEs by means of the ansatz
with one new independent variable

u = ϕ(v), (2)

where v is a new variable.
Further we give some basic definitions.

2. What are reduction and classification of reductions
The equation

Φ
(
x, u, u

1
, . . . , u

l

)
= 0, (3)

where u
k

is the set of all kth-order partial derivatives of the function u = (u1, u2, . . . , um), is

called reducible by means of an ansatz u = ϕ(ω), if substitution of this ansatz into the equation
gives an equation on ω. Here x = (x1, x2, . . . , xn), and in this section we present definitions for
arbitrary equations with n independent and m dependent variables.
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There could be various formats and generalisations of the above ansatz, but for presentation
of the general idea this simplest form is sufficient. The resulting equations are called reduced
equations and are used to find exact solutions. Ansatzes that reduce equations are connected
with the sets of operators of conditional invariance, as explained in [9].

We have the equation (3) and k first-order operators in involution 〈Q1, Q2, . . . , Qk〉 (in the
general case these operators do not form an algebra). These operators reduce the equation
Φ = 0, if the system

Φ = 0, Qiu = 0 (4)

is compatible. Technically, we take the general solution of the system Qiu = 0 – the ansatz, and
substitute it into the equation Φ = 0, obtaining an equation with smaller number of independent
variables.

The concept of “reduction” includes both the reduced equation and the set of new variables,
as well as the ansatz. We can consider as classification of reductions either symmetry classifi-
cation of the system (4) or classification of solutions of its compatibility conditions (reduction
conditions).

3. Review of some methods for PDEs reduction
Let us list some symmetry-related methods used to find exact solutions of PDEs by means
of their reduction to equations with smaller number of independent variables or to ordinary
differential equations:

1. Symmetry reduction or Lie algorithm (for the detailed description of this method see, e.g.,
the books by Ovsyannikov [4] or Olver [5]). This approach is quite algorithmic and thus the
most popular for the systematic search for families of exact solutions of PDEs.

2. The direct method (often giving wider classes of solutions than the symmetry reduction)
was proposed by P. Clarkson and M. Kruskal [7]. This method for majority of equations results in
considerable difficulties as it requires investigation of compatibility and solution of cumbersome
reduction conditions of the initial equation. These reduction conditions are much more difficult
for investigation and solution in the case of equations containing second and/or higher derivatives
for all independent variables, and for multidimensional equations – e.g., in the situation of the
nonlinear wave equations.

This approach is equivalent to finding of Q-conditional symmetries of PDEs (for the proof of
this statement see [9]) and methods for finding of conditional and nonclassical symmetries (the
same reductions may be found by both methods).

3. The direct method for finding of classical symmetry solutions. It is possible to find
reductions using not arbitrary operators of Q-conditional symmetry, but only operators from
the invariance algebra. This way we also will obtain inequivalent reductions.

This method (without identification as a distinct method and without pointing out
classification of reductions) was actually used in the paper by Fushchych and Serov [10].

4. Other methods (including ad-hoc methods and guessing) that produce specific reductions
or exact solutions, e.g., methods named after specific ansatzes being used, or methods similar
to the method of differential constraints. Many famous exact solutions of various famous PDEs
were found by just these methods. Ad-hoc methods include many methods that work only for
some equations such as substitution of some prescribed ansatzes and looking for equations that
they reduce. More solutions and reductions are suggested every day in multiple papers.

However, we need to determine whether these reductions (and thus solutions) are not
equivalent to known ones; to find interesting solutions and reductions within equivalence classes;
to systematise known solutions.
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4. Example of reductions of the noninear d’Alembert equation
Here we consider conditions of reduction of the multidimensional d’Alembert equation (1) by
means of the ansatz (2) with one new independent variable, uµµ = u00 − u11 − · · · − unn.

The reduction conditions are a system of the d’Alembert and eikonal equations (sometimes
they are also called Hamilton equations) [11,12] and have the following form:

vµµ = R(v), vµvµ = r(v). (5)

Sufficient conditions of reduction of the wave equation to an ODE and the general solution
of the system (5) in the case of three spatial dimensions were found by Fushchych, Zhdanov,
Revenko in [13].

It is evident that the d’Alembert–eikonal system (5) may be reduced by local transformations
to the form

vµµ = f(v), vµvµ = λ, λ = 0, 1. (6)

Let us note that the case of λ = 0 leads only to a degenerated reduction equation F (v) = 0
that may give solutions of the original equation u = ϕ(v), ϕ(v) being an arbitrary function,
that we will not consider here. Only the case of λ = 1 in the system (6) provides reductions of
equation (1) to ODEs.

It is possible to generalise statements on compatibility of the d’Alembert–eikonal system (6)
formulated in [13] for three space variables to an arbitrary number of space variables.

Statement. For the system (6) (v = v(x0, x1 . . . , xn)) to be compatible it is necessary and
sufficient that the function f have the following form:

f =
λN

v + C
, N = 0, 1, . . . , n.

Proof of this statement can be obtained as a generalisation of the proof adduced in [13].

5. General solution of the d’Alembert–eikonal system
We will consider in more detail solutions of the system

vµµ =
N

v + C
, N = 0, 1, . . . , n, vµvµ = 1. (7)

These systems for different N are inequivalent with respect to local transformations.
Our results on compatibility of the reduction conditions actually mean that any multidi-

mensional (in n space variables) nonlinear wave equation of the form (1) can be reduced by
ansatzes (2) only to ODEs equivalent up to local transformations of dependent and independent
variables to equations of the following form:

ϕ′′ + ϕ′
N

v
= F (ϕ),

where N is an integer, N = 0, 1, . . . , n.
We presented classification of the reduction conditions (5) up to the local transformations.

For the case of n independent variables we receive n + 1 inequivalent systems of reduction
conditions of the form (7). Thus, we can receive only n + 1 inequivalent reduced equations by
means of the ansatz (2). However, classification of reductions requires also to classify possible
new variables in the ansatz (2).

The solutions of the system (7) can be classified by their ranks. The rank of the solution is
the rank of the (n + 1) × (n + 1) matrix (vµν) of the second derivatives of the function v. It
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follows from the condition vµvµ = 1 that det(vµν) = 0, so we cannot have solutions of the rank
n+ 1. It is obvious that solutions of different ranks cannot be equivalent. Examples of solutions
of the rank N are

v =
(
x20 −

(
x21 + x22 + · · ·+ x2N

))1/2
.

Examples of the zero-rank solutions are linear functions.
Statement. Rank of solutions of the system (7) is equal to N . These solutions can be written

in parametric form similarly to [13] as follows:

v = x0
(
1 + τ2k +B2

l (τk)
)1/2

+ xkτk + xlBl + Φ(τk),

l = N + 1, . . . , n, τk = τk(x), k = 1, . . . , N,

xk + x0

(
τk +Bl

∂Bl
∂τk

)(
1 + τ2k +Bl(τk)

)−1/2
+ xl

∂Bl
∂τk

+
∂Φ

∂τk
= 0,

with functions Φ having certain special forms (examples are adduced below). Bl(τk) are arbitrary
properly differentiable functions of the parameter functions τk.

Further classification of solutions of the reduction conditions will involve the substitution

zk = va
(
1 + τ2m

)−1/2
, p(zk) =

(
1 + τ2m

)−1/2
Φ(τk).

Conditions for the functions Φ are transformed into conditions for p, and further classification
of solutions of the d’Alembert–eikonal system (7) is done in accordance to the rank of the
matrix (pzkzm).

Examples of the form of the function Φ(τ):

Φ(τ) = Ckτk + C0

(
1 + τ2k

)1/2
,

Φ(τ) = Bm(ρ)τm + ρτN −
(
1 + τ2k

)1/2
Q(ρ), m = 1, . . . , N − 1,

Ḃm(ρ)τm + τN −
(
1 + τ2k

)1/2
Q̇(ρ) = 0,

where Bm(ρ), Q(ρ) are arbitrary properly differentiable functions of the parameter function ρ
for the ranks of the matrix (pzkzm) greater than 1.

Thus, we showed classification of solutions of the system (7) by their ranks and by the ranks
of parameter functions p(zk) in the presentation of the general solution.

6. Conclusions and further work
The idea of classification of reductions was presented with the objective of giving hints and
directions for further research – classification of reductions for equations of mathematical physics,
and studying of different reduction methods with consideration of equivalence analysis of the
resulting reductions.

Another direction of further work may be based upon the fact that ansatzes and methods used
for reduction of the d’Alembert (n-dimensional wave) equation can be also used for arbitrary
Poincaré-invariant equations. Arbitrary ansatzes of the form (2) that reduce the equation (1)
will also reduce all Poincaré-invariant scalar equations. It can be easily proved based upon the
fact that all Poincaré-invariant scalar equations can be represented as functions of differential
invariants of the Poincaré algebra. If we substitute the ansatz (2) into any invariant from the
basis of differential invariants of the form uµuνuµν , uµνuµν etc. we will receive the product of
derivatives of the function ϕ(v) and the same forms of differential invariant of the function v.

From the reduction conditions (7) on the function v we get

vµvνvµν = 0, vµνvµν = −N
v2
, vµvνvµαvνα = 0, vµνvµαvνα =

2N

v3
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and so on, thus, the original equation will be reduced to an ODE including only new variable v
and derivatives of the new function ϕ(v).

Another idea for further research – it may be interesting to look at connections between “old”
view to equivalence of symmetry-induced solutions and classification of solutions of the reduction
conditions. One such link is obvious – the reduced equations obtained from subalgebras that
include the operator P0 + P3 would correspond to solutions of the reduction conditions

vµµ = 0, vµvµ = 1.

It will be also extremely interesting to study equivalence of reductions of PDEs that were
obtained by various ad-hoc and other methods involving reduction of PDEs.
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