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Abstract. Group analysis of the spatially homogeneous and molecular energy dependent
Boltzmann equations with source term is carried out. The Fourier transform of the Boltzmann
equation with respect to the molecular velocity variable is considered. The correspondent
determining equation of the admitted Lie group is reduced to a partial differential equation
for the admitted source. The latter equation is analyzed by an algebraic method. A complete
group classification of the Fourier transform of the Boltzmann equation with respect to a source
function is given. The representation of invariant solutions and corresponding reduced equations
for all obtained source functions are also presented.

1. Introduction
The classical Boltzmann equation which plays a central role in kinetic gas theory with
mathematical point of view is a uniform integro-differential equation. At the same time, there
is frequently the need to include additional source terms into it. In particular, the Boltzmann
equation with autonomous sources, independent of the distribution function, are of interest for
the kinetic description of initiation of high threshold processes by “hot” particles, for reacting gas
flows over catalytic surfaces, and some others. A first attempt of application of group analysis
for studying the Boltzmann equation with such a source term was done in [1], where by using the
approach of [2], the spatially homogeneous and isotropic in velocity space Boltzmann equation
with the Maxwell molecular model was reduced to the equation for a generating function of power
moments. The complete Lie symmetry group of the equation for the moment generating function
was recently found in [3]. However, the transformation of the invariant solutions thus obtained
into the corresponding solutions of the original Boltzmann equation is a very complicated task.
An example of typical difficulties can be found in [2], where this transition obstacle was overcome
for obtaining the BKW-solution.

A more promising approach is to consider the Fourier image of the homogeneous and isotropic
Boltzmann equation [4,5]. The extensive group analysis of this equation without a source term
was carried out in [6]. In the present paper these results are generalized for the non-uniform
case.
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The paper is organized as follows. After introducing the equation studied, the determining
equation of an admitted Lie group is derived. The solution of the determining equation is
reduced to the study of a partial differential equation for an admitted source function with some
undefined constants.

For further study of the reduced equation an equivalence Lie group of considered integro-
differential equation is obtained. It is shown that actions of the obtained equivalence
transformations are similar to the automorphisms of the Lie algebra obtained in [6]. This allows
us to use a method of constructing an optimal system of subalgebras for the group classification
of the source function. These studies are followed by consideration of all possible inequivalent
representations of invariant solutions and corresponding reduced equations of the Fourier image
equation.

2. The equation studied
The Fourier image of the spatially homogeneous and isotropic Boltzmann equation with a source
term has the form [4]:

ϕt(x, t) + ϕ(x, t)ϕ(0, t) =

∫ 1

0
ϕ(xs, t)ϕ(x(1− s), t) ds+ q̂(x, t). (1)

Here the function ϕ(x, t) is related with the Fourier transform ϕ̃(k, t) of the distribution function
f(v, t), isotropic in the 3D-space of molecular velocities by the formula

ϕ(x, t) ≡ ϕ(k2/2, t) = ϕ̃(k, t) =
4π

k

∫ ∞
0

v sin(kv)f(v, t) dv.

Similarly, the transform of the isotropic source function q(v, t) is

q̂(x, t) ≡ q̂(k2/2, t) = ˜̂q(k, t) =
4π

k

∫ ∞
0

v sin(kv)q(v, t) dv.

The inverse Fourier transform of ϕ̃(k, t) gives the distribution function

f(v, t) =
4π

v

∫ ∞
0

k sin(kv)ϕ̃(k, t) dk.

In the process of solving the determining equation, we use the property that for any smooth
function ϕ0(x) there exists a solution of the Cauchy problem of equation (1) with the initial
data

ϕ(x, t0) = ϕ0(x).

3. Determining equation
The classical group analysis method cannot be applied to the integro-differential equation (1).
One needs to use the method for equations with nonlocal, in particular, integral terms developed
in [7–9]. A generator of the admitted Lie group is sought in the form1

X = ξ(x, t, ϕ)∂x + η(x, t, ϕ)∂t + ζ(x, t, ϕ)∂ϕ.

According to the algorithm, the determining equation for equation (1) is

Dtψ(x, t) + ψ(0, t)ϕ(x, t) + ψ(x, t)ϕ(0, t)− 2

∫ 1

0
ϕ(x(1− s), t)ψ(xs, t) ds = 0, (2)

1 We follow here notations accepted in [10].
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where Dt is the total derivative with respect to t, and the function ψ(x, t) is

ψ(x, t) = ζ(x, t, ϕ(x, t))− ξ(x, t, ϕ(x, t))ϕx(x, t)− η(x, t, ϕ(x, t))ϕt(x, t).

The determining equation (2) has to be satisfied for any solution of equation (1). This allows us
to exclude the derivatives ϕt, ϕxt and ϕtt from the determining equation. In fact, differentiating
(1) and substituting ϕt found from (1), we obtain

ϕxt(x, t) = − ϕx(x, t)ϕ(0, t) + 2

∫ 1

0
sϕx(xs, t)ϕ(x(1− s), t) ds+ q̂x(x, t),

ϕtt(x, t) = ϕ(x, t)ϕ2(0, t)− 3ϕ(0, t)

∫ 1

0
ϕ(xs, t)ϕ(x(1− s), t) ds

+ 2

∫ 1

0

∫ 1

0
ϕ(x(1− s), t)ϕ(xss′, t)ϕ(xs(1− s′), t) ds′ds

− q̂(0, t)ϕ(x, t)− q̂(x, t)ϕ(0, t) + 2

∫ 1

0
ϕ(x(1− s), t)q̂(xs, t) ds+ q̂t(x, t).

Analysing the determining equation (2) with a method similar to that developed in [9] for
the case q̂ = 0, we get that admitted generators have the form

X = c0X0 + c1X1 + c2X2 + c3X3,

where
X0 = x∂x, X1 = xϕ∂ϕ, X2 = ϕ∂ϕ − t∂t, X3 = ∂t, (3)

the constants c0, c1, c2, c3 and the function q̂ satisfy the classifying equation

(c2t− c3)q̂t − c0xq̂x + (c1x+ 2c2)q̂ = 0. (4)

In order to find proper values of the constants c0, c1, c2, c3 and the function q̂ we apply an
algebraic method [11].

Note that the case with the function q̂ = 0 was completely studied in [6], where it was shown
that the admitted Lie algebra is four-dimensional and which is spanned by the generators X0,
X1, X2 and X3.

3.1. Equivalence transformations
To carry out a group classification one needs to know equivalence transformations of equation (1).
For convenience we introduce the operator L defined by

Lϕ = ϕt(x, t) + ϕ(x, t)ϕ(0, t)−
∫ 1

0
ϕ(xs, t)ϕ(x(1− s), t) ds. (5)

Considering the transformations of Lϕ corresponding to the generators X0, X1, X2 and X3,
some equivalence transformations can be obtained.

The transformations corresponding to the generator X0 = x∂x map a function ϕ(x, t) into
the function ϕ̄(x̄, t̄) = ϕ(x̄e−a, t̄), where a is the group parameter. The transformed expression
of (5) becomes

L̄ϕ̄ = ϕ̄t̄(x̄, t̄) + ϕ̄(x̄, t̄)ϕ̄(0, t̄)−
∫ 1

0
ϕ̄(x̄s, t̄)ϕ̄(x̄(1− s), t̄) ds

= ϕt̄(x̄e
−a, t̄) + ϕ(x̄e−a, t̄)ϕ(0, t̄)−

∫ 1

0
ϕ(x̄e−as, t̄)ϕ(x̄e−a(1− s), t̄) ds

= ϕt(x, t) + ϕ(x, t)ϕ(0, t)−
∫ 1

0
ϕ(xs, t)ϕ(x(1− s), t) ds

= Lϕ.
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This means that
T 0
a : x̄ = xea, t̄ = t, ϕ̄ = ϕ, ¯̂q = q̂

are the equivalence transformations of equation (1). Similarly, the transformations corresponding
to the generator X3 = ∂t induce the equivalence Lie group

T 3
a : x̄ = x, t̄ = t+ a, ϕ̄ = ϕ, ¯̂q = q̂.

The transformations corresponding to the generator X2 = ϕ∂ϕ − t∂t map a function ϕ(x, t)
to the function ϕ̄(x̄, t̄) = eaϕ(x̄, t̄ea), which gives

L̄ϕ̄ = ϕ̄t̄(x̄, t̄) + ϕ̄(x̄, t̄)ϕ̄(0, t̄)−
∫ 1

0
ϕ̄(x̄s, t̄)ϕ̄(x̄(1− s), t̄) ds

= eaϕt̄(x̄, t̄e
a) + eaϕ(x̄, t̄ea)eaϕ(0, t̄ea)−

∫ 1

0
e2aϕ(x̄s, t̄ea)ϕ(x̄(1− s), t̄ea) ds

= e2aϕt(x̄, t̄e
a) + e2aϕ(x̄, t̄ea)ϕ(0, t̄ea)− e2a

∫ 1

0
ϕ(x̄s, t̄ea)ϕ(x̄(1− s), t̄ea) ds

= e2a

(
ϕt(x, t) + ϕ(x, t)ϕ(0, t)−

∫ 1

0
ϕ(xs, t)ϕ(x(1− s), t) ds

)
= e2aLϕ.

Hence we conclude that the transformations

T 2
a : x̄ = x, t̄ = te−a, ϕ̄ = ϕea, ¯̂q = q̂e2a

compose another equivalence Lie group of equation (1).
The transformations corresponding to the generator X1 = xϕ∂ϕ map a function ϕ(x, t) to

the function ϕ̄(x̄, t̄) = ex̄aϕ(x̄, t̄). Thus,

L̄ϕ̄ = ϕ̄t̄(x̄, t̄) + ϕ̄(x̄, t̄)ϕ̄(0, t̄)−
∫ 1

0
ϕ̄(x̄s, t̄)ϕ̄(x̄(1− s), t̄) ds

= ex̄aϕt̄(x̄, t̄) + ex̄aϕ(x̄, t̄)ϕ(0, t̄)−
∫ 1

0
ex̄asϕ(x̄s, t̄)ex̄(1−s)aϕ(x̄(1− s), t̄) ds

= ex̄aϕt(x̄, t̄) + ex̄aϕ(x̄, t̄)ϕ(0, t̄)− ex̄a
∫ 1

0
ϕ(x̄s, t̄)ϕ(x̄(1− s), t̄) ds

= exa
(
ϕt(x, t) + ϕ(x, t)ϕ(0, t)−

∫ 1

0
ϕ(xs, t)ϕ(x(1− s), t) ds

)
= exaLϕ,

which gives the equivalence Lie group constituted by the transformations

T 1
a : x̄ = x, t̄ = t, ϕ̄ = ϕexa, ¯̂q = q̂exa.

Summarizing these calculations one can conclude that the generators

Xe
0 = x∂x, Xe

1 = xϕ∂ϕ + xq̂∂q̂, Xe
2 = ϕ∂ϕ − t∂t + xq̂∂q̂, Xe

3 = ∂t (6)

define an equivalence Lie algebra of equation (1).
Note also that the transformation

E : t̄ = −t, ϕ̄ = −ϕ (7)
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does not change equation (1), i.e., this is a discrete equivalence transformation being an
involution.

Let us study the change of a generator X = x0X0 + x1X1 + x2X2 + x3X3 under the
transformations corresponding to these equivalence transformations. After the change defined
by an equivalence transformation one gets the generator

X = x̂0X̂0 + x̂1X̂1 + x̂2X̂2 + x̂3X̂3, (8)

where
X̂0 = x̄∂x̄, X̂1 = x̄ϕ̄∂ϕ̄, X̂2 = ϕ̄∂ϕ̄ − t̄∂t̄, X̂3 = ∂t̄.

The corresponding transformations of the basis generators are

T 0
a : X0 = X̂0, X1 = e−aX̂1, X2 = X̂2, X3 = X̂3;

T 1
a : X0 = X̂0 + aX̂1, X1 = X̂1, X2 = X̂2, X3 = X̂3;

T 2
a : X0 = X̂0, X1 = X̂1, X2 = X̂2, X3 = e−aX̂3;

T 3
a : X0 = X̂0, X1 = X̂1, X2 = X̂2 + aX̂3, X3 = X̂3.

or coordinates of the generator X are changed as follows

T 0
a : x̂1 = x1e

−a,
T 1
a : x̂1 = x1 + ax0,
T 2
a : x̂3 = x3e

−a,
T 3
a : x̂3 = x3 + ax2,

where only changeable coordinates are presented.

3.2. Algebraic approach for analyzing equation (4)
Group classification of equation (1) is carried out up to the equivalence transformations
considered in the previous section. The method for classifying the source function q̂ is similar to
the method which was used for classifying equations for moment generating function in [3]. First
of all we note that actions of the equivalence transformations T ia, i = 0, . . . , 3, are equivalent to
inner automorphisms of the Lie algebra L4 spanned by the generators X0, X1, X2 and X3.

The table of commutators of these generators is

X0 X1 X2 X3

X0 0 X1 0 0

X1 −X1 0 0 0

X2 0 0 0 −X3

X3 0 0 X3 0

Using the table of commutators, the inner automorphisms are obtained as follows

A0 : x̂1 = x1e
a,

A1 : x̂1 = x1 + ax0,
A2 : x̂3 = x3e

a,
A3 : x̂3 = x3 + ax2,

where only changeable coordinates are presented.
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Thus we conclude that the actions of equivalence transformations coincides with the actions
of inner automorphisms. Because of this property we use an optimal system of subalgebras of
the algebra L4 for classifying equation (1).

The commutator table of the Lie algebra L4 coincides with the commutator table considered
in [3], where group classification of the equation for a moment generating function was studied.
The difference in constructing an optimal system here consists of the set of involutions: in
the present case the involution corresponding to x̂1 = −x1 is absent comparing with [3]. The
optimal system of subalgebras of the Lie algebra L4 is presented in Table 1, where γ is an
arbitrary constant.

Table 1. Optimal system of subalgebras of L4

No. Basis No. Basis

1. X0, X1, X2, X3 13. X0 +X3, X1

2. γX0 +X2, X1, X3 14. X1, X3

3. X0, X1, X3 15. X2, X3

4. X0, X1, X2 16. X0, X1

5. X0, X2, X3 17. γX0 +X2

6. X2, X3 18. X1 +X2

7. X2 +X0, X1 + X3 19. X1 −X2

8. γX2 + 2X0, X3 20. X0 +X3

9. X1 +X2, X3 21. X1 +X3

10. X1 −X2, X3 22. X0

11. X0, X2 23. X1

12. γX0 +X2, X1 24. X3

Using the optimal system of subalgebras for group classification of equation (1), the function
q̂(t, x) is obtained by substituting, into equation (4), the constants ci corresponding to the basis
generators of a given subalgebra of the optimal system of subalgebras, and solving the obtained
system of equations. For example, one can consider one-dimensional subalgebra {X1−X2} (see
Case 19 of Table 1). For this case there is a single equation for the function q̂(t, x),

tq̂t − xq̂x + 2q̂ = 0.

The general solution of this equation is q̂ = tx−2Φ(x), where Φ(x) is an arbitrary function.
As another example, the two-dimensional Lie subalgebra {γX2 + 2X0, X3} (see Case 8 of

Table 1) is considered. For this case there are two sets of the coefficients ci, i = 0, . . . , 3:

γX2 + 2X0 : c0 = 2, c1 = 0, c2 = γ, c3 = 0;
X3 : c0 = 0, c1 = 0, c2 = 0, c3 = 1.

These sets define a system of two equations for q̂(t, x). Substituting both sets of ci into equa-
tion (4), we obtain

γ

(
1

2
tq̂t + q̂

)
− xq̂x = 0, q̂t = 0.

The general solution of these equations is q̂ = βxγ , where β is a constant.
The complete group classification obtained by calculations of this kind is presented in Table 2.
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Table 2. Group classification of equation (1)

No. q̂(t, x) Generators

1. 0 X0, X1, X2 X3

2. βx2etx X2 +X0, X1 +X3

3. βxγ γX2 + 2X0, X3

4. βt−2 X0, X2

5. t−2Φ(xtγ) γX0 +X2

6. t−(x+2)Φ(x) X1 +X2

7. tx−2Φ(x) X1 −X2

8. Φ(xe−t) X0 +X3

9. extΦ(x) X1 +X3

10. Φ(t) X0

11. Φ(x) X3

Here β and γ are arbitrary constants, and the function Φ is an arbitrary function of its
argument. The other subalgebras of Table 1, which are omitted in Table 2, give inconsistent
systems for q̂(t, x).

4. Reduced equations and invariant solutions
In this section, for each obtained function q̂ we consider the admitted Lie algebra. Using an
optimal system of subalgebras of these Lie algebras, we derive a form of invariant solutions and
corresponding reduced equations. Similarly to differential equations, the reduced equations for
finding invariant solutions have fewer number of the independent variables than equation (1).
There are some trivial cases where invariant solutions are obtained in an explicit form.

4.1. The function q̂ = βx2ext

For the source function q̂ = βx2etx the admitted Lie algebra of equation (1) is {X2+X0, X1+X3}.
An optimal system of subalgebras of this Lie algebra consists of the subalgebras

{X2 +X0}, {X1 +X3}, {X2 +X0, X1 +X3}.

A representation of invariant solutions corresponding to the subalgebra {X2 + X0} is
ϕ = t−1r(z), where z = xt. The substitution of this representation into equation (1) gives

zr′(z)− r(z) + r(z)r(0)−
∫ 1

0
r(zs)r(z(1− s)) ds = βz2ez. (9)

Equation (9) is an equation with the single independent variable z.
A representation of invariant solutions corresponding to the subalgebra {X1 + X3} is

ϕ = extr(x). Substituting this representation into equation (1), we obtain the reduced equation

r(x)(x+ r(0))−
∫ 1

0
r(xs)r(x(1− s)) ds = βx2.

The subalgebra {X2 +X0, X1 +X3} gives invariant solutions in the form ϕ = Cxext, where
C is a constant. After substituting this representation into equation (1), we get an algebraic
equation for the constant C,

C2 − 6C + 6β = 0.

If β ≤ 3
2 , then C = 3±

√
9− 6β.
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4.2. The source function q̂ = βxγ

An optimal system of subalgebras is constituted by the subalgebras {γX2 +2X0, X3}, {X3} and
either {γX2 + 2X0} for γ 6= 0 or {X3 + αX0} for γ = 0.

A representation of invariant solutions corresponding to the subalgebra {γX2 + 2X0, X3} is

ϕ = Cx
γ
2 , where the constant C satisfies the algebraic reduced equation

C2B + β = 0 with B := B
(γ

2
,
γ

2

)
=

∫ 1

0
s

γ
2 (1− s)

γ
2 ds,

and B is the beta function [12].
A representation of invariant solutions corresponding to the subalgebra {X3} is ϕ = r(x),

and the associated reduced equation is

r(x)r(0)−
∫ 1

0
r(xs)r(x(1− s)) ds = βxγ .

For γ 6= 0 and the subalgebra {γX2+2X0}, invariant solutions are represented as ϕ = t−1r(z),
where z = t2xγ . Substituting this representation into equation (1), we have the reduced equation

2zr′(z)− r(z) + r(z)r(0)−
∫ 1

0
r(zs)r(z(1− s)) ds = βz

For γ = 0 and the subalgebra {X3 + αX0}, invariant solutions takes in the form ϕ = r(z),
where z = xe−αt, and the function r is a solution of the reduced equation

−αzr′(z) + r(z)r(0)−
∫ 1

0
r(zs)r(z(1− s)) ds = β.

4.3. The source function q̂ = βt−2

The admitted Lie algebra of equation (1) with the source function q̂ = βt−2 is {X0, X2}, whose
optimal system of subalgebras consists of the subalgebras {X0, X2}, X2 + αX0} and {X0}.

The single invariant solution corresponding to the subalgebra {X0, X2} is ϕ = −βt−1.
For the subalgebra {X2 +αX0}, a representation of invariant solutions is ϕ = t−1r(z), where

z = xtα. Substituting this representation into equation (1), we get the reduced equation

αzr′(z)− r(z) + r(z)r(0)−
∫ 1

0
r(zs)r(z(1− s)) ds = β.

A representation of invariant solutions corresponding to the subalgebra {X0} is ϕ = r(t),
which gives the the solution ϕ = −βt−1 + C, where C is a constant.

4.4. The source function q̂ = t−2Φ(xtγ)
In this case the admitted Lie algebra is {γX0 +X2}. Invariant solutions have the representation
ϕ = t−1r(z), where z = xtγ . Substituting this representation into equation (1), we obtain the
reduced equation

γzr′(z)− r(z) + r(z)r(0)−
∫ 1

0
r(zs)r(z(1− s)) ds = Φ(z).

For the other one-dimensional algebras of Table 2 we just present the final results including
representations of invariant solutions and reduced equations.
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Case 6: ϕ = t−(x+1)r(x), −(x+ 1)r(x) + r(x)r(0)−
∫ 1

0
r(xs)r(x(1− s)) ds = Φ(x).

Case 7: ϕ = tx−1r(x), (x− 1)r(x) + r(x)r(0)−
∫ 1

0
r(xs)r(x(1− s)) ds = Φ(x).

Case 8: ϕ = r(z), where z = xe−t, −zr′(z) + r(z)r(0)−
∫ 1

0
r(zs)r(z(1− s)) ds = Φ(z).

In particular, for BKW-solution r = 6ez(1− z) which gives that Φ = 0.

Case 9: ϕ = extr(x), xr(x) + r(x)r(0)−
∫ 1

0
r(xs)r(x(1− s)) ds = Φ(x).

Case 10: ϕ =
∫

Φ(t) dt.

Case 11: ϕ = r(x), r(x)r(0)−
∫ 1

0
r(xs)r(x(1− s)) ds = Φ(x).
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