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Abstract. In this paper, using an inverse scattering approach, we describe how the selection of 

mode effective indices and thus phase velocities can be used to control group velocity in a 

waveguide. As such it is shown that differential group delay can be equalised or minimised 

over a wavelength of choice. A particular feature of the new designs is the development of 

rings and a peaked core which may split depending upon the number of guided modes. These 

designs show characteristics comparable with commercially available fibres but with refractive 

index profiles that differ from typical graded-index designs.  

1. Introduction 

There is currently great interest in spatial division multiplexing [1] in order to overcome the 

impending “capacity crunch” [2] of single-core, single-mode optical fibre transmission systems. In 

particular, mode-division multiplexing is of particular interest because of the large number of modes 

that can be used in a single fibre. However, in order to use such methods it is important to control the 

deleterious effect of differential group delay (DGD) as well as mode-coupling. As a result work has 

been done to investigate the tailoring of optical fibre refractive index (RI) profiles to meet these needs 

[3–5]. One particular design by Gruner-Nielsen et al. consists of a graded-index core and an outer 

trench RI. While the performance of this design in terms of minimisation of DGD and low mode 

coupling between the LP01 and LP11 modes is very good, it relies upon a parametric design process. 

We were interested to know whether direct control of mode effective indices could be used to control 

both of these characteristics.        

     In this paper we extend our work [6] on the inverse scattering (IS) design of single-mode planar 

waveguides to the case of multimode planar waveguides through the use of Darboux transformations 

as have been used previously by Mills[7] in the design of optical interconnects. We show that through 

manipulation of the phase velocities of the waveguide it is possible to manipulate the group velocities 

to the extent of controlling the wavelength of equalisation and/or minimising the DGD over large 

wavelengths. It is clear that we have performed this investigation in planar waveguides rather than 

optical fibres, but we believe that the qualitative features of the designs will carry over.   

2. The Darboux transformations 

As has previously been described and utilised by other authors [8,9], there exists a correspondence 

between a bound state in quantum mechanics and a discrete propagating mode in a waveguide.  The IS 

theory allows for the construction of a potential with a given set of bound states a priori through the 
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use of the Darboux transformations [10] . In this paper we will not describe in detail the process 

involved other than to say that associated with the set of N propagation constants βm are a set of bound 

state eigenvalues km defined through the relationship 

 

 2 2 2 2

0 2m mk k n    (1) 

 

Where k0=2π/λd is the free-space wavenumber at the design wavelength λd, n2 is the refractive index of 

the cladding of the waveguide and βm is the m’th propagation constant.  

     Given that there exists Brown’s identity [11] connecting the phase velocity and group velocity to a 

weighed integral of power densities in waveguide regions we proposed that control of dispersive 

properties would be possible through the above method. With the propagation constants supplied a 

priori the potential is derived and its dispersive properties obtained through direct scattering. We 

applied this method to the design of planar waveguides with two, three and four modes. In all cases the 

design wavelength was chosen to be λd=1.55µm and a cladding index of n2=1.444. In addition, it was 

assumed in calculating the DGD that material dispersion is the same for all modes and profile 

dispersion is negligible.  

3. Dual-mode designs 

We first select the effective index of the TE0 mode and vary the spacing of the TE1 mode with respect 

to this and the cladding. We find that through the variation of the TE1 mode effective index we may 

change the wavelength for which group velocity equalisation is achieved. We illustrate this procedure 

in figure 1 while demonstrating how the refractive index of the design is also altered. It can be seen 

that as the effective index of the TE1 mode approaches that of the TE0 mode we have a deepening of 

the central dip and a movement towards longer wavelengths of the dispersion equalisation wavelength. 

This behaviour was originally discussed by Stolen [12] where he considered optical fibres with ring 

index profiles.  

 

Figure 1. Dual mode waveguide designs with varying group velocity equalisation wavelength 

specified by changing TE1 mode effective index for fixed TE0  

 

     It is also interesting to note that reducing the effective index of TE0 results in a scaling down and 

across of the refractive index profile as well as a reduction in the slope of the DGD as can be seen in 

figure 1. As such the DGD can set to zero at a design wavelength and minimised over a large 

wavelength about this point.   
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4. Three and four-mode designs 

In this section we show that designs can be obtained with minimisation of DGD with respect to TE0 of 

all modes. This is achieved by varying the effective indices of the propagating modes. In particular, in 

figure 2 we show a design for a three mode waveguide, coloured red, for which DGD of all modes is 

brought to within ~1 ps/m. This DGD is close in range to that associated with graded-index few-mode 

fibres produced by OFS  (±0.4 ps/m) [13] but with a different design.  

 

 
Figure 2. Three mode waveguide designs showing variation with wavelength of DGD with the red 

curves showing DGD of all modes to within ~1 ps/m  

 

     It is shown that equi-distant effective indices (blue curve), which approximate the standard 

parabolic RI profiles, result in waveguides with the highest DGD.  Varying the inter-modal effective-

index differences results in a pronounced central peak followed by the development of a ring. 

Increasing the contrast of the central peak and emphasising the development of the outer ring leads to 

minimisation of DGD at an ever larger wavelength as shown by the green design. 

 

 
Figure 3. Four mode waveguide designs showing variation with wavelength of DGD with the red 

curve corresponding to a DGD of all modes of ~1ps/m 
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     In figure 3 we illustrate a four mode waveguide design, once again coloured red, for which DGD of 

all modes is once again ~1 ps/m. From figure 2 and 3 it can be seen that the overall qualitative shape 

of the three and four mode designs is the same with the slight development of a ring but in the four 

mode case an additional splitting of the central peak region. As in the two mode and three mode cases 

this is to be expected from coupler theory where approximately degenerate modes are associated with 

separation of the waveguide cores.   

5. Conclusions 

In this paper we have shown that control of effective indices of modes through the use of the Darboux 

transformation can be used parametrically to equalise or minimise differential group delay over a 

range of wavelengths. In addition we have identified that these waveguides can all be described 

qualitatively as consisting of an outer ring and a peaked core which may in turn split as the number of 

guided modes increases.  

     Our designs have shown characteristics comparable with those of commercially available few-

mode fibres. While our investigation has been limited to planar waveguides there are similarities in 

intensity profiles between TE modes and LP modes and it is expected from Brown’s identity that 

characteristics of these planar designs can be adapted for use in future optical fibres.  
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