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Abstract. The exposure to nanomaterials can yield changes in the mineral composition of 
tissues which may have long term health repercussions. In this study, the changes in mineral 
composition of rat lungs, exposed to a nanoaerosol of silicon carbide (SiC), has been studied 
by means of global and local ion beam probes with the Particle-Induced X-ray Emission 
(PIXE) technique, measuring the whole lung contents and selected areas where SiC was found, 
respectively. It was found that from a global perspective there is a small decrease in the 
mineral contents (phosphorous, sulphur, chlorine and potassium) of the lung except for Ca, 
while locally these mineral contents tend fluctuate. 

1. Introduction
Nanosafety and nanotoxicology studies focus mainly in the impact of nanomaterials (NMs) through 
the analysis of biomarkers and, when possible, the quantification of the NM dose within the target 
such as tissues or cells [1-3]. One aspect often overlooked in these studies is the fact that the presence 
of an external agent in the media environment can cause alterations to the same media which may 
result in an increase or decrease of the media contents, such as proteins or minerals, and hence have an 
impact on the composition of the target. For example, recent in vivo studies with silicon carbide (SiC) 
and titanium carbide (TiC) NMs in oral administration have shown a perturbation of the mineral 
absorption within the gastrointestinal tract [1, 4]. 

In this study the impact of a SiC nanoaerosol on the composition of rat lungs is investigated. SiC 
was selected as a model NM due to its extensive industrial usage [5]. The mineral composition of rat 
lungs exposed to SiC was quantified by Particle-Induced X-ray Emission (PIXE) from two 
perspectives: using a broad beam (PIXE analysis) to quantify the lung overall mineral contents, and 
using a micro beam (µPIXE analysis) to quantify the lung mineral contents in areas around SiC 
deposition.  

2. Materials and methods

2.1.  Animals 
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Nulliparous and non-pregnant female rat Sprague-Dawley (8 weeks, 190-200 g; supplier: Charles 
River Laboratories) were selected for this study. Each one was housed in ventilated cages and was 
acclimatized 2 weeks previous to the exposure. Experiments were performed with the agreement of 
the Committee on the Ethics of Animal Experiments of the University of Namur (protocol 
“FUNDP10/128 DO inhalation”, approved in April 2010).  

Rats were sacrificed at 0, 3, 7, or 28 days after exposure, and their lungs were excised after a heart 
lavage. 

2.2.  Exposure 
Silicon carbide (SiC) NPs were bought from Io-Li-Tec. No trace of endotoxins was found and it 

was used without further treatment for nanoaerosol production.  
Rats were exposed in a Whole-Body Exposure Model based on the Organisation for Economic Co-

operation and Development (OECD) guideline 403, as described by Laloy et al. [6]. Rats were 
exposed 6 h a day during 5 consecutive days to a SiC nanoaerosol diluted at  2.5x105 particles/cm3. 
The control group was exposed to the same filtered air used to produce the nanoaerosol. 

2.3.  Sample preparation 
For broad beam measurement, rat lungs were dried 48 hours at 37 °C and prepared into pellets 

following a well-established protocol for high volume analysis [2].  
For micro beam measurement, rat lungs were frozen in liquid nitrogen and sections of 6 x 6 mm2 

and 10 µm thick were obtained with a cryostat microtome. The sections were placed on polypropylene 
films fixed to aluminium holders and were left to dry at ambient conditions without any further 
treatment. 

2.4.  Ion beam analysis 
Samples were chemically quantified with a broad beam (few mm2) at the Laboratory of Analyses by 
Nuclear Reaction (LARN) of the Physics of Matter and Radiation Unit of the University of Namur, 
and with a micro beam (few µm2) at the Surrey Ion Beam Centre. The Particle-Induced X-ray 
Emission (PIXE) and Rutherford Back-Scattering (RBS) techniques were used to measure heavy 
elements (i.e.  Si & Ca) and light elements (i.e.  C & O), respectively. The principles of PIXE and 
RBS have been described elsewhere [2]. The techniques PIXE and RBS are called as such for broad 
beam analysis, while  the “µ” prefix is added for micro beam analysis, hence µPIXE and µRBS. RBS 
(µRBS) data was used to adjust the matrix for PIXE (µPIXE) analysis. The measurement geometry for 
broad beam has been described previously [1], and used a 2.0 or 2.5 MeV proton beam in this study. 
The geometry for the micro beam has been described previously [7], and used a 2.5 MeV proton beam 
in this study. 

2.5.  Statistical analysis 
Data was analyzed using the Holm–Sidak method (two way ANOVA). The statistical significance was 
compared between the control and  exposed samples, dividing the significant results in p<0.05, 
p<0.01, and p<0.001. 

Three samples (n=3) per exposure condition were measured with broad beam. Eight (n=8) scans 
were done per exposure condition and four (n=4) scans were done per control condition were 
measured with micro beam. 

Mineral concentrations are presented as the weighted mean concentration with error bars 
representing 1 standard deviation of the weighted mean. Ratios between exposed and control samples 
use an error bar taking into account the propagation of errors from both samples. 
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The mineral concentration found in the rat lungs is presented in Table 1 for PIXE measurements and 
Table 2 for µPIXE measurements. In the case of PIXE measurement the mineral concentration change 
is easier to observe for rats sacrificed at day 28: phosphorous (P), sulfur (S), chloride (Cl) and 
potassium (K) show a lower content with respect to their respective controls; while Ca showed a 
statistically significant increase with respect to the control. The results are summarized in Figure 1a. 

Table 1. Elemental analysis of trace minerals in lungs measured by PIXE. The second 
col umn gives the dry lung weight. Statistically significance exposed versus control 
group: * indicates p<0.05, *** indicates p<0.001. MDL: Minimum level of detection.  

Controlgroup Elemental analysis (wt. ppm, weighted mean ± SD) 

Sacrifice day Weight 
(mg, 

mean ± 
SD) 

Si P S Cl K Ca 

0 183 ± 22  < MDL 21,368 ± 
469 

13,021 ± 
514 

20,471 ± 
1,141 

15,825 ± 
704 

601 ± 
58 

3 190 ± 37 < MDL 21,118 ± 
620 

12,701 ± 
487 

27,027 ± 
5,909 

16,033 
± 1,350 

621 ± 
97 

7 220 ± 24 < MDL 22,822 ± 
885 

14,578 ± 
429 

20,813 ± 
917 

17,928 
± 656 

680 ± 
68 

28 212 ± 14 < MDL 25,319 ± 
2,183 

15,632 ± 
967 

25,456 ± 
3,698 

17,184 
± 1,472 

851 ± 
106 

Exposed 
group 

Sacrifice day 
Si P S Cl K Ca 

0 233 ± 32 5,039 ± 
789 *** 

20,330 ± 
281 

12,745 ± 
440 

23,059 ± 
4,367 

14,206 ± 
1,686 

654 ± 
101 

3 209 ± 17 5,216 ± 
867 *** 

20,231 ± 
633 

12,865 ± 
534 

16,742 ± 
1,090 

16,592 ± 
863 

553 ± 
89 

7 166 ± 27 3,766 ± 
207 *** 

21,685 ± 
1,611 

13,398 ± 
1,092 

22,497 ± 
2,923 

16,882 ± 
1,951 

667 ± 
26 

28 291 ± 96 40 ± 10 * 20,048 ± 
3,348 

12,163 ± 
2,020 

17,623 ± 
3,522 

14,364 ± 
3,266 

1,264 ± 
251 * 

Table 2. Elemental analysis of trace minerals in lungs measured by µPIXE. The second 
col umn gives the dry lung weight. Statistically significance exposed versus control 
group: * indicates p<0.05, *** indicates p<0.001. 

Control 
group 

Elemental analysis (wt. ppm, weighted mean ± SD) 

Sacrifice 
day 

Weight 
(mg, mean 
± SD) 

Si P S Cl K Ca 

0 183 ± 22 188 ± 29 10,092 ± 
450 

6,400 ± 
293 

9,630 ± 
498 

9,919 ± 
476 211 ± 9 

3 190 ± 37 174 ± 61 7,419 ± 84 4,679 ± 
83 

8,014 ± 
172 

7,498 ± 
85 

147 ± 8 

7 220 ± 24 104 ± 10 7,067 ± 
293 

5,088 ± 
210 

5,701 ± 
232 

7,401 ± 
315 241 ± 12 

28 212 ± 14 82 ± 9 
6,994 ± 

155 4,391 ± 63 
6,724 ± 

114 
6,826 ± 

118 

142 ± 10 

Exposed 
group 

3. Results and discussion
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Sacrifice 
day Si P S Cl K Ca 

0 233 ± 32 4,393 ± 
143 *** 

9,603 ± 
224 

5,254 ± 
143 * 

9,041 ± 
335 

9,429 ± 
235 220 ± 15 

3 209 ± 17 3,569 ± 
164 *** 

8,215 ± 
243 

5,064 ± 
148 

7,542 ± 
284 

7,995 ± 
240 209 ± 4 

7 166 ± 27 1,903 ± 
220 *** 

5,210 ± 
468 * 

3,282 ± 
272 * 

22,146 ± 
3,317 * 

4,043 ± 
467 * 397 ± 163 

28 291 ± 96 732 ± 
33 *** 

8,520 ± 
155 * 

5,787 ± 
104 * 

9,001 ± 
198 

8,282 ± 
140 * 224 ± 10 

Mineral concentration by µPIXE showed a marked, and in some cases a statistically significant, 
increase in all elements with respect to the controls for days 3 and 28; with a marked decrease for P, S 
and K and a marked increase in Cl and Ca at day 7. The results are summarized in Figure 1b. Of the 
measured elements, Cl presents the highest errors bars and it is also known as a common contaminant 
elements for PIXE, hence its results may not be representative without further detailed measurements. 
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Figure 1. Control normalized mineral concentration of rat lungs. 
Statistically significance exposed versus control group: * 
indicates p<0.05. See Statistical analysis subsection for details 
on the error bar calculation.  

The study of mineral composition variations is motivated by extracting more knowledge about the 
possible changes to key minerals such as Ca and P, whose ions control many of the cellular processes 
[8, 9], or electrical impulse conduction from ions of K in the neuron function [10], the regulation of 
osmotic pressue and acid-base balance by Cl [11], and the role of disulfide bonds in protein assemble 
and structure [12].  

There is a difference between the statistically significant mineral changes in terms of concentration 
and days found in PIXE and µPIXE measurements. This difference reflects the type of sample being 
measured and hence the point of view obtained by each type of measurement: with PIXE the measured 
sample represents the whole lung, pulverized and made into a pellet, and therefore it reflects a global 
value on the total lung mineral composition. Taking into account that SiC likely remains inside the 
lung as observed due to the lack of impact on plasma analysis and the low levels of induced 
inflammation [6], most of the mineral changes, if any, should occur in the lung alveolar sac and as 
such any mineral composition should be relatively less evident than in the vicinity of the NM 
localization. On the other hand, µPIXE measurements were done on sections where SiC was found 
and as such it reflects a local perspective of the exposure, hence reflecting more statistical significant 
changes in the mineral composition. Indeed this is the case for the mineral concentration in P, S and K. 
From both perspectives it is judged that locally the alveolar sacs, due to the limited inflammation 
process, experience a depletion of minerals (7 days) which then overcompensates with higher 
concentrations (28 days), while as a whole the lung is effectively experiencing a decrease in minerals.  

4. Summary
The mineral concentration of rat lungs exposed to an acute SiC nanoaerosol was investigated by PIXE 
and studied from the global lung mineral composition and local lung sections exposed directly to SiC, 
using a broad beam and a micro beam, respectively. While globally there is a slight decrease in 
mineral composition, local lung sections show a fluctuation of minerals. 
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