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Abstract. Radiation therapy is used to treat localized cancers, aiming to deliver a dose of
radiation to the tumor volume to sterilize all cancer cells while minimizing the collateral effects
on the surrounding healthy organs and tissues. The planning of radiation therapy treatments
requires decisions regarding the angles used for radiation incidence, the fluence intensities and, if
multileaf collimators are used, the definition of the leaf sequencing. The beam angle optimization
problem consists in finding the optimal number and incidence directions of the irradiation beams.
The selection of appropriate radiation incidence directions is important for the quality of the
treatment. However, the possibility of improving the quality of treatment plans by an optimized
selection of the beam incidences is seldom done in the clinical practice. Adding the possibility
for noncoplanar incidences is even more rarely used. Nevertheless, the advantage of noncoplanar
beams is well known. The optimization of noncoplanar beam incidences may further allow the
reduction of the number of beams needed to reach a clinically acceptable plan. In this paper
we present the benefits of using pattern search methods for the optimization of the highly
non-convex noncoplanar beam angle optimization problem.

1. Introduction

Cancer is one of the most significant health problems worldwide with respect to its incidence
and mortality alike. One of the main treatment forms besides surgery and chemotherapy is
radiation therapy. Approximately 60% of all patients diagnosed with cancer, which corresponds
to nearly 7.6 million patients worldwide, benefit from radiation therapy, either to cure the disease
or to palliate symptoms. With this therapy, several beams of ionizing radiation, sent at different
incidence directions, pass through the patient. The intersection of these beams is centered at the
tumor attempting to sterilize all cancer cells while the surrounding healthy organs and tissues
receive radiation from some but not all radiation beams and may thus be spared. An important
type of radiation therapy is intensity-modulated radiation therapy (IMRT), a modern technique
where the radiation beam is modulated by a multileaf collimator allowing the irradiation of the
patient using non-uniform radiation fields from selected angles. Multileaf collimators enable the
transformation of the beam into a grid of smaller beamlets of independent intensities. A common
way to solve the IMRT optimization problems is to use a beamlet-based approach leading to a
large-scale programming problem. Due to the complexity of the whole optimization problem,
computation of mathematical algorithms is mandatory to achieve valuable solutions.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1



Mini EURO Conference on Improving Healthcare: new challenges, new approaches IOP Publishing
Journal of Physics: Conference Series 616 (2015) 012014 doi:10.1088/1742-6596/616/1/012014

Typically, radiation is generated by a linear accelerator mounted on a gantry that can rotate
along a central axis and is delivered with the patient immobilized on a movable couch. The
movement of the couch combined with the rotation of the gantry allows radiation from almost
any angle around the tumor. Despite the fact that almost every angle is possible for radiation
delivery, the use of coplanar angles, i.e., angles that lay in the plane of rotation of the gantry, is
predominant. Furthermore, regardless of the evidence presented in the literature that selecting
appropriate radiation beam incidence directions — beam angle optimization (BAO) problem —
can lead to a plan’s quality improvement [4, 5, 37], in clinical practice, most of the time, beam
directions continue to be either manually selected by the treatment planner in a time-consuming
trial and error iterative process or patients are irradiated using evenly spaced coplanar beams.
The difficulty of solving the BAO problem, a highly non-convex problem with many local minima
on a large search space [14], is one possible justification for the manual selection or the use of
coplanar incidence directions. However, evidence shows that noncoplanar incidence directions
can lead to better treatment plans compared to plans obtained with coplanar incidence directions
[5, 33, 38]. Moreover, the use of noncoplanar incidence directions is decisive for some types
of cancers cases, e.g., brain tumors. More recently, some studies have been published where
the advantages of noncoplanar incidences have also been shown for extra-cranial treatments like
pancreatic cancer [11], prostate cancer [33], mediastinal lymphomas [13], or lung [36]. All of them
report a significant increase of organs sparing without losing target coverage or homogeneity.

In this paper we present the benefits of using pattern search methods for the optimization of
the highly non-convex noncoplanar BAO problem. A set of clinical cases of head-and-neck
tumors treated at the Portuguese Institute of Oncology of Coimbra is used to discuss the
potential of this approach in the optimization of the noncoplanar BAO problem. The paper
is organized as follows. In the next Section we describe the noncoplanar BAO problem. Pattern
search methods framework is presented in Section 3. Computational tests using clinical examples
of head-and-neck cases are presented in Section 4. In the last Section we have the conclusions.

2. Noncoplanar beam angle optimization in IMRT treatment planning

The BAO problem is a quite difficult problem to solve since it is a highly non-convex
optimization problem with many local minima. In most of the previous works on BAO, the
entire range, [0°,360°] in the coplanar case, of gantry angles is discretized into equally spaced
beam directions with a given angle increment, such as 5 or 10 degrees, where exhaustive searches
are performed directly or guided by a variety of different heuristics including simulated annealing
[7], genetic algorithms [19], particle swarm optimization [24] or other heuristics incorporating a
priori knowledge of the problem [20]. Although those global heuristics can theoretically avoid
local optima, globally optimal or even clinically better solutions cannot be obtained without
a large number of objective function evaluations. The concept of beam’s-eye-view (BEV)
has been a popular approach to address the BAO problem as well [28]. This approach uses
topographic criteria to rank the candidate beam directions. Despite the computational time
efficiency of these approaches, the quality of the solutions proposed cannot be guaranteed since
the interplay between the selected beam directions is ignored. Other approaches include set
cover [22], neighborhood search approaches [3], hybrid approaches [6] or gradient searches [14].
Aleman et al. [4] propose a response surface approach and include noncoplanar angles in beam
orientation optimization. Lim and Cao [25] propose an approach that consists of two sequential
phases: branch-and-prune and local neighborhood search. Schreibmann et al. [34] propose a
hybrid multiobjective evolutionary optimization algorithm for IMRT treatment planning and
apply it to the optimization of the number of incident beams, their orientations and intensity
profiles. Ehrgott et al. [21] discuss a mathematical framework that unifies the approaches found
in literature.

Many of the previous BAO studies are based on a variety of scoring methods or
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approximations of the fluence map optimization (FMO) problem to gauge the quality of the beam
angle set leading to beam angle sets with no guarantee of optimality and questionable reliability
since it has been extensively reported that optimal beam angles for IMRT are often non-intuitive
[35]. The optimal solution of the FMO problem has been used to drive the coplanar BAO problem
[3, 14, 26, 34] including in our works [19, 29, 30, 31]. Many mathematical optimization models
and algorithms have been proposed for the FMO problem, including linear models [32], mixed
integer linear models [23], nonlinear models [12], and multicriteria models [8]. Our approach for
modeling the noncoplanar BAO problem uses the optimal solution value of the FMO problem
as the measure of the quality for a given beam angle set. Thus, we will present the formulation
of the noncoplanar BAO problem followed by the formulation of the FMO problem we used. We
will assume that the number of beam angles is defined a priori by the treatment planner.

2.1. Noncoplanar BAO Model

Let us consider n to be the fixed number of (noncoplanar) beam directions. Let 6 denote the
gantry angle and ¢ denote the couch angle. Note that, the usual coplanar angles are obtained
for a fixed couch position at ¢ = 0. In our formulation, instead of a discretized sample, all
continuous gantry angles and couch angles will be considered. Since the angle —1° is equivalent
to the angle 359° and the angle 361° is the same as the angle 1°, we can avoid a bounded
formulation. For the coplanar optimization, there are no limitations on the choice of candidate
directions in the optimization problem. However, for noncoplanar setups, collisions between the
patient/couch and the gantry may occur for some candidate directions. In order to keep an
unbounded formulation, that information will be embedded in the objective function. A simple
formulation for the BAO problem is obtained by selecting an objective function such that the
best set of beam angles is obtained for the function’s minimum:

min f((917¢1)7"'7(9n7¢n))
(1)
st ((91,¢1), o (9n,¢n)) € R" x R",

In this work, the objective function f<(91,¢1), ce (0n,¢n)> that measures the quality of

the set of beam directions (61, ¢1), ..., (0n, ¢n) corresponds to the optimal value of the FMO
problem for each fixed set of beam directions and incorporates the collisions that may occur
between the patient/couch and the gantry for some candidate directions:

+00 if collisions occur

f((gl’ 61);- - (O, ¢")> - { optimal value of the FMO otherwise.

The used formulation and resolution of the FMO problem are presented next.

2.2. FMO formulation and resolution

Treatment plan optimization is inherently a multicriteria process. However, typically, the
FMO problem is modeled as a weighted sum function where constraints are often implemented
as objectives. This formulation of the FMO problem makes it harder to capture an accurate
trade-off between objectives without violating constraints and may lead to inferior treatment
plans. Multicriteria approaches for the FMO problem have been proposed in recent works
[15, 27]. The advantage of these approaches is the possibility of selecting, a posteriori, a desired
solution from a set of Pareto-optimal treatment plans. This option is not suitable to include
in a fully automated BAO process. Recently, a multicriteria optimization approach has been
developed, where a set of a priori defined criteria have to be met (objectives and constraints)
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Table 1. Wish-list for head and neck cases.

Structure Type Limit
PTV1 Maximum 74.9 Gy (=107% of prescribed dose PTV1)
PTV2 Maximum 63.6 Gy (=107% of prescribed dose PTV2)
PTV1 shell Maximum 59.5 Gy (=85% of prescribed dose PTV1)
Constraints PTV2 shell Maximum 50.5 Gy (=85% of prescribed dose PTV2)
Spinal cord Maximum 45.0 Gy
Brainstem Maximum 54.0 Gy
Body Maximum 70.0 Gy
Structure Type Priority Goal Sufficient Parameters
PTV1 Minimize LTCP 1 1 0.5 T; = 70 Gy; a= 0.75
PTV2 Minimize LTCP 2 1 0.5 T; = 594 Gy; a= 0.75
Objectives  Parotid (R) Minimize mean 3 26 Gy - -
Parotid (L)  Minimize mean 4 26 Gy - -
Body Minimize mean 5 - - -

[8, 9, 10]. This approach is suited for an automated BAO process. In this work, a multicriterial
optimization based on a prescription called wish-list [8, 9, 10] is our choice to address the FMO
problem. The wish-list contains hard constraints and prioritized objectives. Constraints have
to be strictly met while objectives are optimized taking into account priorities defined in the
wish-list. The higher an objective priority is, the higher the probability that the corresponding
objective will be met. The wish-list used for the clinical examples of retrospective treated cases
of head and neck tumors at the Portuguese Institute of Oncology of Coimbra is given in Table 1.
In general, the head and neck region is a complex area to treat with radiotherapy due to the
large number of sensitive organs in this region (e.g. eyes, mandible, larynx, oral cavity, etc.). For
simplicity, in this study, the organs at risk (OARs) used for treatment optimization were limited
to the spinal cord, the brainstem and the parotid glands. The tumor to be treated plus some
safety margins is called planning target volume (PTV). For the head and neck cases in study,
two PTVs (PTV1 and PTV2) were defined, to be treated with a simultaneous integrated boost
technique. The wish-list contains seven constraints and five objectives based on the prescribed
doses for all the structures considered in the optimization. All constraints are maximum-dose
constraints. To support the dose optimization in the tumor volumes, PTV1 shell and PTV2 shell
are surfaces constructed by computerized volume expansions (ring with no width) positioned at
10 mm distance from PTV1 and PTV2, respectively. The imposed maximum-dose constraints
avoid high doses far from the PTVs. Objectives with priorities 1 and 2 aim at dose coverage of
PTV1 and PTV2, respectively. Priorities 3-5 aim at sparing the parotids and unspecified tissue
(Body).

For the target dose optimization, Breedveld et. al [8, 9, 10] choose the logarithmic tumor
control probability (LTCP) [1],

1 Xz
LTCP = Y e aDi=Ti)
Ny 2

where Nt is the number of voxels in the target structure, D; is the dose in voxel i, T; is the
prescribed dose, and « is the cell sensitivity parameter. For doses D; lower than T;, the LTCP
has an exponential penalty while for doses higher than the prescribed dose, the value slowly
approaches 0. LTCP equals 1 for a homogeneous dose equal to T;. A higher « results in less
voxels with a low dose, and thus a higher percentage of the PTV receiving 95% of the prescribed
dose (PTV coverage).
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The algorithm used for multicriterial optimization of beam intensity profiles using the wish-
list is the 2pec [9]. The algorithm is organized in two phases. In the first phase, following
the prioritization of the wish-list, the objectives are minimized within constraints. After each
objective minimization, a constraint based on the minimized objective results is added to be used
in the minimization of the next priority objectives. This action guarantees that higher order
priority objective results are not deteriorated by lower priority objective optimization. In the end
of the first phase, the plan obtained fulfills all the constraints of the wish-list and each objective
has an attained value that is equal to its goal (even if better results could have been achieved),
or higher than its goal if the constraints (including higher priority objective constraints) did not
allow better results. In the second phase, following the prioritization, all objectives apart from
LTCP objectives are sequentially fully minimized. The minimization for the LTCP objectives
stops at the defined sufficient value to leave space for lower prioritized objectives improvement,
and not to escalate the dose. For a detailed description of the algorithm see Breedveld et al.[9].

The FMO model is used as a black-box function and the conclusions drawn regarding BAO
coupled with this formulation /resolution are valid also if different FMO formulations/resolutions
are considered.

3. Pattern Search Methods

Pattern search methods are derivative-free optimization methods that require few function
value evaluations to converge and have the ability to avoid local entrapment. These two
characteristics gathered together make pattern search methods suited to address the BAO
problem.

Pattern search methods use the concept of positive bases (or positive spanning sets) to move
towards a direction that would produce a function decrease. A positive basis for R™ can be
defined as a set of nonzero vectors of R whose positive combinations span R"™ (positive spanning
set), but no proper set does. A positive spanning set contains at least one positive basis. It can
be shown that a positive basis for R™ contains at least n + 1 vectors and cannot contain more
than 2n [18]. Positive bases with n+ 1 and 2n elements are referred to as minimal and maximal
positive basis, respectively. Commonly used minimal and maximal positive bases are [I — €],
with I being the identity matrix of dimension n and e = [1 ... 1]T, and [I — I], respectively.
The motivation for directional direct search methods such as pattern search methods is given
by one of the main features of positive basis (or positive spanning sets) [18]: there is always
a vector v' in a positive basis (or positive spanning set) that is a descent direction unless the
current iterate is at a stationary point, i.e., there is an a > 0 such that f(z* + av?®) < f(aF).
This is the core of directional direct search methods and in particular of pattern search methods.
The notions and motivations for the use of positive bases, its properties and examples can be
found in [2, 18].

Pattern search methods are iterative methods generating a sequence of non-increasing iterates
{zr}. Given the current iterate z*, at each iteration k, the next point z*!, aiming to provide a
decrease of the objective function, is chosen from a finite number of candidates on a given mesh
M, defined as

My, = {oF +,Vz: z € Z},

where «y, is the mesh-size (or step-size) parameter, Z is the set of nonnegative integers and V
denote the n x p matrix whose columns correspond to the p (> n+ 1) vectors forming a positive
spanning set.

Pattern search methods are organized around two steps at every iteration. The first step
consists of a finite search on the mesh, free of rules, with the goal of finding a new iterate that
decreases the value of the objective function at the current iterate. This step, called the search
step, has the flexibility to use any strategy, method or heuristic, or take advantage of a priori
knowledge of the problem at hand, as long as it searches only a finite number of points in the
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mesh. The search step provides the flexibility for a global search since it allows searches away
from the neighborhood of the current iterate, and influences the quality of the local minimizer
or stationary point found by the method.

If the search step fails to produce a decrease in the objective function, a second step, called
the poll step, is performed around the current iterate. The poll step follows stricter rules and,
using the concepts of positive bases, attempts to perform a local search in a mesh neighborhood
around x*, N'(x¥) = {x* + v : forall v € P} C My, where P, is a positive basis chosen
from the finite positive spanning set V. For a sufficiently small mesh-size parameter ay, the poll
step is guaranteed to provide a function reduction, unless the current iterate is at a stationary
point [2]. So, if the poll step also fails to produce a function reduction, the mesh-size parameter
ap must be decreased. On the other hand, if both the search and poll steps fail to obtain an
improved value for the objective function, the mesh-size parameter is increased or held constant.
The most common choice for the mesh-size parameter update is to halve the mesh-size parameter
at unsuccessful iterations and to keep it or double it at successful ones.

4. Computational results

The pattern search methods framework was tested for the optimization of the noncoplanar
BAO problem using a set of two clinical examples of retrospective treated cases of head-and-neck
tumors at the Portuguese Institute of Oncology of Coimbra (IPOC). Treatment plans with five
to nine equispaced coplanar beams are used at IPOC and are commonly used in practice to treat
head-and-neck cases [3]. We considered plans with five beams because the importance of BAO
increases when a lower number of beam directions is considered. Therefore, treatment plans
of five coplanar and noncoplanar orientations were obtained using pattern search methods and
denoted coplanar and noncoplanar, respectively. These plans were compared with the typical
5-beam equispaced coplanar treatment plans denoted equi. The objective of these comparisons
is twofold. First, to demonstrate that pattern search methods are suited to address the highly
non-convex BAO problem producing good results both in 2D (coplanar) and 3D (noncoplanar)
search spaces. Second, to show that using this approach, higher quality treatment plans using
a noncoplanar beam angle set can be obtained.

We choose to implement the pattern search methods algorithm taking advantage of the
availability of an existing pattern search methods framework implementation used successfully
by us to tackle the BAO problem [29, 30, 31] — the last version of SID-PSM [16, 17]. The spanning
set used was the positive spanning set (e —e I — I]). Each of these directions corresponds
to, respectively, the rotation of all incidence directions clockwise, the rotation of all incidence
directions counter-clockwise, the rotation of each individual incidence direction clockwise, and
the rotation of each individual incidence direction counter-clockwise. Since we want to improve
the quality of the typical equispaced treatment plans, the starting point considered is the
equispaced coplanar 5-beam angle set. To address the BAO problem, efficiency on the number of
function value computation is of the utmost importance. Therefore, the number of trial points
in the search step should be minimalist. In the last version of SID-PSM, the search step was
provided with the use of minimum Frobenius norm quadratic models to be minimized within
a trust region, which can can lead to a significant improvement of direct search for smooth,
piecewise smooth, and noisy problems [16]. However, these models cannot be computed until a
minimum number of points is evaluated. Moreover, the points already tested should span the
search space as best as possible to increase the radius of the search. Therefore, both for the
coplanar and noncoplanar cases, in the first iterations, the trial points computed in the search
step correspond to the points presented in the previous section, that span the 2D and the 3D
search spaces, respectively.

Our tests were performed on a Dell Precision T5600 with 8-core Intel Xeon processador
E5-2687W, 64GB 1600MHz DDR3 ECC RDIMM. For importing DICOM images, compute and
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Figure 1. History of the 5-beam angle optimization process for coplanar and noncoplanar
angles, considering the equispaced configuration (equi) as starting point, for cases 1 and 2, 1(a)
to 1(b) respectively.

Table 2. Target coverage, conformity and homogeneity obtained by treatment plans.

Case Target parameters noncoplanar  coplanar  equi
PTV1 Coverage 0.983 0.944 0.943
PTV1 Conformity 0.140 0.114 0.087

1 PTV1 Homogeneity 0.909 0.899 0.901
PTV2 Coverage 0.940 0.940 0.940
PTV2 Conformity 0.733 0.710 0.726
PTV2 Homogeneity 0.793 0.779 0.779
PTV1 Coverage 0.994 0.984 0.985
PTV1 Conformity 0.176 0.202 0.158

9 PTV1 Homogeneity 0.921 0.913 0.919
PTV2 Coverage 0.957 0.952 0.942
PTV2 Conformity 0.570 0.582 0.598
PTV2 Homogeneity 0.801 0.795 0.776

visualize dose, and optimize dose distributions, we used YARTOS, an in-house optimization suite
developed at Erasmus MC Cancer Institute in Rotterdam. YARTOS is written in MATLAB
and contains an optimizer based on a primal-dual interior-point algorithm, capable of solving
general nonlinear non-convex optimization problems, and tailored for IMRT treatment planning
making full use of multi-threaded computing. The optimal value of the FMO problem used to
drive our BAO algorithm was obtained using the YARTOS optimizer.

The history of the 5-beam angle optimization process, presented in terms of the number
of function evaluations, is shown in Figure 1 for the two clinical cases of head-and-neck
tumors. Both coplanar and noncoplanar plans obtained considerable improvements in terms
of FMO optimal value, with respect to the initial point (typical clinically used equispaced
configuration equi), with the later obtaining better results at the cost of few more function
value evaluations. Despite the improvement in the FMO value, the quality of the results can
be perceived considering a variety of metrics. A metric usually used for plan evaluation is the
volume of PTV that receives 95% of the prescribed dose (coverage). Typically, 95% of the
PTV volume is required. The conformity and homogeneity are other metrics typically screened.
These metrics are output values of the YARTOS optimizer and are reported in Table 2. We can
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Table 3. OARs sparing obtained by treatment plans.

Mean Dose (Gy) Max Dose (Gy)
Case OAR noncoplanar  coplanar equi noncoplanar  coplanar equi

Spinal cord - - - 48.311 48.429 49.715

1 Brainstem - - - 51.760 54.484 54.694
Left parotid 17.980 20.082 23.142 - - -
Right parotid 21.253 23.510 26.396 - - -
Spinal cord - - - 45.233 45.174 45.100

9 Brainstem - - - 54.179 54.240 54.629
Left parotid 25.126 25.367 28.303 - - -
Right parotid 34.844 35.950 38.069 - - -

PAROTIDAI
PTV2

PAROTIDAD
PTV1

noncoplanar|
- - - coplanar
Ceeequi

noncoplana
- - = coplanar
o equi

Volume (%)
Volume (%)

Ry
60 80 0 20 60 80

0 20 40
Dose (Gy)

40
Dose (Gy)

Figure 2. Cumulative dose volume histogram comparing the results obtained by noncoplanar,
coplanar and equi for the first case.

verify that noncoplanar treatment plans consistently obtained slightly better target coverage,
conformity and homogeneity numbers compared to coplanar treatment plans. Both optimized
plans outperform the equi treatment plans. Mean and/or maximum doses of OARs are usually
displayed to verify organ sparing. Organ sparing results are shown in Table 3. The maximum
dose values for the spinal cord and the brainstem are similar for the different treatment plans,
with a slightest advantage for the noncoplanar treatment plans. However, as expected, the main
differences reside in parotid sparing. The optimized treatment plans enhance better parotid
sparing compared to the equi treatment plans. The noncoplanar treatment plans manage to
obtain an average reduction of the parotid’s mean dose irradiation in 4.2 Gy compared to the
equi treatment plans while the coplanar treatment plans only obtained a 2.7 Gy average decrease.

Typically, results are judged also by their cumulative dose-volume histogram (DVH). For
illustration, DVH results for the first patient are displayed. For clarity, only parotids and tumor
volumes are displayed and the DVHs were split as an attempt to better visualize the results.
The results displayed in Figure 2 confirm the benefits of using the optimized beam directions
obtained and in particular noncoplanar treatment plans.

5. Discussion and conclusions

The BAO problem is a continuous global highly non-convex optimization problem known to
be extremely challenging and yet to be solved satisfactorily. An approach for the resolution of
the noncoplanar BAO problem, using a pattern search methods framework, was proposed and
tested using two clinical head-and-neck cases. Pattern search methods framework is a suitable
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approach for the resolution of the non-convex BAO problem due to their structure, organized
around two phases at every iteration. The poll step, where convergence to a local minima is
assured, and the search step, where flexibility is conferred to the method since any strategy
can be applied. The use of minimum Frobenius norm quadratic models to be minimized within
a trust region are used in the search step and can lead to a significant improvement of direct
search for the type of problems at hand, particularly if a prior proper exploration of the search
space is guaranteed. Adding to the search step flexibility, and similarly to other derivative-
free optimization methods, when minimizing non-convex functions with a large number of local
minima, pattern search methods have the ability to avoid being trapped by the closest local
minima of the starting iterate, and find a local minima in lowest regions.

For the clinical cases retrospectively tested, the use of noncoplanar directions in our approach
showed a positive influence on the quality of the minimizer found. The improvement of the local
solutions in terms of objective function value corresponded, for the head-and-neck cases tested,
to high quality treatment plans with better target coverage and with improved organ sparing,
in particular better parotid sparing. Moreover, we have to highlight the low number of function
evaluations required to obtain locally optimal solutions, even using noncoplanar directions and
consequently exploring a much larger search space, which is a major advantage compared to
other global heuristics where the continuous solution space is confined to a discrete subset,
often only considering coplanar irradiation angles to achieve clinically acceptable computation
times. The efficiency on the number of function value computations is of the utmost importance,
particularly when the BAO problem is modeled using the optimal values of the FMO problem.
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