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Abstract.
In this paper it is presented a manifestly covariant formulation of the Aharonov-Bohm (AB)

phase difference for the magnetic AB effect . This covariant AB phase is written in terms of the
Faraday 2-form F and using the decomposition of F in terms of the electric and magnetic fields
as four-dimensional (4D) geometric quantities. It is shown that there is a static electric field
outside a stationary solenoid with resistive conductor carrying steady current, which causes that
the AB phase difference in the magnetic AB effect may be determined by the electric part of
the covariant expression, i.e., by the local influence of the 4D electric field and not, as generally
accepted, in terms of nonzero vector potential.

PACS numbers: 03.65.Vf, 03.30.+p, 03.50.De

1. Introduction

In a recent paper [1] the covariant generalizations of the Aharonov-Bohm (AB) effect [2] are
considered. One of these generalizations, which will be investigated in this paper, is in terms of
the space-time “area” integral of the electric and magnetic fields written in terms of the Faraday
2-form F , Eq. (6) in [1] or Eq. (1) here.

In this paper two important changes relative to [1] will be presented. The first change, which
will be discussed in Sec. 2, refers to the mathematical formulation, whereas the second one refers
to the physical interpretation of the AB phase shift and it will be discussed in Sec. 3, see also Sec.
10 in [3]. It is true that the expression for the AB phase difference, Eq. (6) in [1], is a covariant
expression, but it is not the case with the decomposition of F in terms of the components of
the 3-vectors E and B, Eq. (7) in [1]. Instead of it a manifestly covariant decomposition of F ,
i.e., of Fµν , will be presented by Eq. (5). As can be seen from [4-9], in the four-dimensional
(4D) spacetime, in contrast to the usual transformations (UT) of the 3-vectors E and B, Eq.
(2) here, or Eq. (11.148) in [10], according to which the transformed E′ is expressed by the
mixture of the 3-vectors E and B, the mathematically correct Lorentz transformations (LT)
always transform the 4D algebraic object representing the electric field only to the electric field;
there is no mixing with the magnetic field, Eq. (4) here or Eqs. (42) and (43) in [3]. This
is first shown by Minkowski in Sec. 11.6 in [11] and reinvented and generalized in terms of
4D geometric quantities in [4-9]. A brief discussion is given in [3]. Using such 4D electric and
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magnetic fields the manifestly covariant expression for the AB phase difference is given by Eq.
(8), which replaces Eqs. (8) and (9) from [1].

In Sec. 3, we use the results from [3], particularly it refers to the discussion from Sec. 10 in
[3]. There, it is mentioned that always there are external electric fields from stationary resistive
conductors carrying constant currents, see, e.g., Sec. 4 in [12] and references therein. In Secs.
7-7.2 in [3] it is shown that in the 4D geometric approach to special relativity, the invariant
special relativity (ISR), there is a static electric field outside a moving and a stationary solenoid
with a steady current not only for resistive conductors but also for superconductors. Note that
in the ISR an independent physical reality is attributed to the 4D geometric quantities and not,
as usual, to the 3D quantities. Furthermore, in Sec. 8 in [3], it is discovered that there is such
static 4D electric field not only outside a moving permanent magnet, as generally accepted in
physical literature, but outside a stationary permanent magnet as well. As explained in [3] that
result is based on the paper [13] in which the generalized Uhlenbeck-Goudsmit hypothesis is
formulated, Eq. (9) in [13], i.e., Eq. (59) in [3]. The mentioned results for the existence of
the 4D external electric fields may give the possibility to explain the experimentally observed
fringe shift for the magnetic AB effect even in Tonomura’s experiments [14], Sec. 10 in [3]: “in
terms of forces, which so far have been overlooked.” Here, in Sec. 3, these results from [3] are
combined with the correct covariant formulation of the AB effect from Sec. 2, i.e., with Eqs.
(10) and (11) for δαE , to explain the existence of the magnetic AB phase difference in terms of
the overlooked 4D electric force and not, as usual, in terms of the vector potential.

The existence of the overlooked 4D external electric fields is one of the reasons why we do
not consider the covariant AB phase in terms of the four-potentials, δαEB = (e/~)

∮
Aµdx

µ,
Eq. (5) in [1]. Another reason is that in [15] an axiomatic formulation of the electromagnetism
is presented in which only the field equation for F is postulated, Eq. (4) in [15], i.e., Eq.
(20) in [3]. It is shown in [15] that the electromagnetic field F can be taken as the primary
quantity for the whole electromagnetism both in the theory and in experiments; F is a well-
defined 4D measurable quantity. It yields the complete description of the electromagnetic field
and there is no need to introduce either the potentials (thus dispensing with the need for the
gauge conditions) or the field vectors. That formulation with the F field is a self-contained,
complete and consistent formulation. The generalization of Eq. (4) in [15] to a moving medium
is presented in [16]. There, [16], the field equations are written in terms of F and the generalized
magnetization-polarization bivectorM and not, as usual, in terms of F and the electromagnetic
excitation tensor H.

2. Covariant expression for the AB phase shift

The covariant expression for the AB phase difference in terms of the Faraday 2-form F is
presented by Eq. (6) in [1], which is repeated here

δαEB = (−e/2~)

∫
Fµνdx

µ ∧ dxν = (e/~)

∫
F, (1)

where F = (−1/2)Fµνdx
µ∧dxν . (The notation is the same as in [1]; dxµ and dxν are differential

four-vectors and throughout the paper we set c = 1.) In order to show that this covariant
expression (1) reduces to the usual expressions with the 3-vectors, Eqs. (2) and (4) in [1], the
Faraday 2-form F is decomposed using the components of the 3-vectors E and B, Eq. (7) in
[1]. It is worth mentioning that Eq. (7) in [1] is not mathematically correct; the expression
(−1/2)Fµνdx

µ ∧ dxν (it will be denoted as (F)) is covariant under the LT, but it is not the case
with its decomposition (Exdx+Eydy+Ezdz)∧dt+Bxdy∧dz+Bydz∧dx+Bzdx∧dy (it will be
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denoted as (EB)). The expression (EB) is obtained from that one with Fµν , (F), using the usual
identification of the components of Fµν with the components of the 3-vectors E and B, e.g., Eq.
(11.138) in [10], see also Eq. (3) and the comment on it in [3]. In all traditional approaches it
is supposed that the same identification holds in a relatively moving inertial frame of reference,
see Eq. (7) in [3]. This means that it is considered that the components of E and B transform
under the LT as the components of Fµν transform, i.e., that the LT of the components of E and
B (for the boost in the x direction) are

E′x = Ex, E
′
y = γ(Ey − βBz), E′z = γ(Ez + βBy),

B′x = Bx, B
′
y = γ(By + βEz), B

′
z = γ(Bz − βEy), (2)

see, e.g., Sec. 11.10 and Eq. (11.148) in [10], or the discussion and equations (9) and (10) in
[3]. The essential feature of the transformations (2) is that the transformed components E′x,y,z
are expressed by the mixture of the components of the 3-vectors E and B, and similarly for B′.
The electric field E in one inertial frame is “seen” as slightly changed electric field E′ and an
induced magnetic field B′ in a relatively moving inertial frame. From the time of Einstein’s
fundamental paper [17], the transformations (2) are always considered to be the relativistically
correct LT (boosts) of E and B, but we shall call them, as already said, the UT. As can be seen
from Secs. 3.1 and 3.2 in [3], the above mentioned identification is synchronization dependent
and it holds only if Einstein’s synchronization [17] is used. There, it is also shown that the
mentioned identifications are meaningless if only the Einstein synchronization is replaced by an
asymmetric synchronization, the “radio” synchronization. That nonstandard synchronization is
described in more detail in [18], see also [13]. This is also mentioned below, see Eq. (9) and the
discussion with it. But, different synchronizations are only different conventions and physics
must not depend on conventions.

Therefore, as first shown by Minkowski in Sec. 11.6 in [11] and independently reinvented
and generalized in terms of the 4D geometric quantities in [4-9], Fµν can be decomposed in a
covariant manner

Fµν = (vµEν − vνEµ) + εµναβv
αBβ,

Eµ = Fνµv
ν , Bµ = (1/2)εµναβF

ναvβ, (3)

where Eµ and Bµ are the components of the 4D electric and magnetic fields respectively, whereas
vµ are the components of the 4D velocity of a family of observers who measure electric and
magnetic fields, see also Sec. 5 in [3]. Since Fµν is antisymmetric it holds that Eµv

µ = Bµv
µ = 0,

only three components of Eµ and Bµ are independent. In the 4D spacetime the mathematically
correct decomposition of F into 4D electric and magnetic fields and the 4-velocity of the observer,
Eq. (3), is already firmly theoretically founded and it is known to many physicists. The recent
example is in [19]; it is only the electric part (the magnetic part is zero there). Similarly, in
the component form as in (3), this decomposition is presented, e.g., in [20] and in the basis-free
form with the abstract 4D quantities, e.g., in [21].

¿From the mathematical viewpoint it is trivially to see how, e.g., Eµ from (3) is transformed
under the LT; in the mathematically correct LT the transformed components E′µ are not
determined only by F ′µν , as in all usual approaches, e.g., Eqs. (11.147) and (11.148) in [10],
but also by v′µ. This is first shown by Minkowski in Sec. 11.6 in [11]. Let v, E and B are
1 × 4 matrices and F is a 4 × 4 matrix; their components are implicitly determined in the
standard basis. Minkowski first described how v and F separately transform under the LT A
(the matrix of the LT is denoted as A). The LT of the 4-velocity v is v′ = vA and the LT of
the field-strength tensor F is F ′ = A−1FA, then, as shown by Minkowski, the mathematically

IARD 2014 IOP Publishing
Journal of Physics: Conference Series 615 (2015) 012015 doi:10.1088/1742-6596/615/1/012015

3



correct LT of E = vF is E = vF −→ E′ = (vA)(A−1FA) = (vF )A = EA. This means that
under the LT both quantities, the field-strength tensor F (4 × 4 matrix) and the 4-velocity v
(1×4 matrix) are transformed and their product transforms as any 1×4 matrix transforms. As
already stated that mathematically correct procedure is reinvented and generalized using the
4D geometric quantities both in the tensor formalism and in the geometric algebra formalism in
[4-9]. Particularly, the comparison with Minkowski’s results, Sec. 11.6 in [11], is presented in [9].
The essential point is that the 4D electric field E transforms by the LT again to the 4D electric
field E′; there is no mixing with the 4D magnetic field B, i.e., the components Eµ transform by
the LT again to the components E′µ of the same 4D electric field and there is no mixing with
Bµ,

E′0 = γ(E0 + βE1), E
′
1 = γ(E1 + βE0), E

′
2,3 = E2,3, (4)

for a boost along the x1 axis. It is easily seen that the UT, Eq. (11.148) in [10], i.e., Eq.
(2) here, will be simply obtained in this 4D geometric approach if only the components Fµν are
transformed but not the components vµ. Such procedure corresponds to the usual identifications
of the components of Fµν with the components of the 3-vectors E and B in both relatively moving
inertial frames of reference. A short derivation of these results can be seen in [7]. In this case
there is no need to write the transformations for the components Bµ since they transform as
in (4). This means that it is proved in [4-9] that, contrary to the generally accepted opinion,
the UT of the 3-vectors E and B, Eq. (2), are not the LT, but that the mathematically correct
LT are given by Eq. (4). For a brief review see Sec. 5 in [3] or Sec. 3 in [22]. It is interesting
that although Eq. (3) is known to many physicists, e.g., [20, 21], it is not noticed that the
mathematically correct LT of, e.g., Eµ = Fνµv

ν , necessarily require that both Fνµ and vν have
to be transformed and not only Fνµ. In the 4D spacetime, from the mathematical viewpoint, the
4D electric and magnetic fields are correctly defined and they transform as any other 4-vector
transforms, i.e., according to Eq. (4).

Hence, instead of Eq. (7) in [1] we have

F = (−1/2)Fµνdx
µ ∧ dxν =

(−1/2)[(vµEν − vνEµ) + εµναβv
αBβ]dxµ ∧ dxν . (5)

In Eq. (5) both expressions for F are manifestly covariant under the LT, which does not hold, as
already stated, for Eq. (7) in [1]. In contrast to the usual treatment from [1], δαEB that is given
by Eq. (8) below is the same for all relatively moving inertial observers and for all coordinate
bases used by them; the principle of relativity is naturally satisfied. This proves a mathematical
and relativistic correctness of this manifestly covariant approach.

For the reader’s convenience and for easier comparison with [1] we have written, e.g., Eq. (3),
only with components, but as F is a 4D geometric quantity, a 2-form (F = (−1/2)Fµνdx

µ∧dxν),
so is, e.g., the electric field E, a 4D geometric quantity, an 1-form (E = Eµdx

µ). Both, F and
E in these relations are written in a specific coordinate basis, the standard basis, with the
Einstein synchronization of distant clocks and Cartesian space coordinates. In [1], as in all
usual covariant approaches, the standard basis is exclusively used, but, as pointed out above,
different systems of coordinates are allowed in an inertial frame and they are all equivalent in
the description of physical phenomena. Thus, for example, one can use the above mentioned
asymmetric synchronization, the “radio” synchronization. The important difference relative
to the usual formulation with 3-vectors is that in the 4D spacetime a 4D geometric quantity
is the same 4D quantity for all inertial observers and for all coordinate bases used by them,
E = Eµdx

µ = E′µdx
′µ = Eµ,rdx

µ,r = ... , where the primed quantities are the Lorentz transforms
of the unprimed ones and the quantities with the index “r” are in the coordinate basis with
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the “radio” synchronization. Observe that in [18] and in the second and third papers in [23]
the “radio” synchronization is used throughout the papers. Moreover, in Eq. (4) in [18] it is
presented the transformation matrix that connects Einstein’s system of coordinates with another
system of coordinates in the same reference frame. Also, Eq. (1) in [18], it is derived such
form of the LT, which is independent of the chosen system of coordinates, including different
synchronizations. Since in the ISR every 4D geometric quantity is invariant under the LT the
principle of relativity is automatically satisfied and there is no need to postulate it outside the
mathematical formulation of the theory as in Einstein’s formulation of SR, [17].

For simplicity and for easier comparison with [1] we shall introduce the inertial frame of
“fiducial” observers (vµ = (1, 0, 0, 0)) with the standard basis (Einstein’s synchronization) in it,
which will be called the “f”-frame. In that frame it holds that E0 = B0 = 0 and only the spatial
components of Eµ and Bµ remain. From (3) it follows that these components are

Ei = F0iv
0 = F0i, Bi = (1/2)ε0ijkF

kj ; (6)

the same components as in, e.g., Eq. (11.138) in [10]. Observe that the “f”-frame is not any kind
of a preferred frame, because any inertial frame can be chosen to be that frame and it is usually
taken that the laboratory frame is the “f”-frame. However, in any other relatively moving inertial
frame, the S′ frame, the “fiducial” observers are moving, and the components vµ transform as
in (4), v′µ = (γ,−βγ, 0, 0). Hence, as already shown by Minkowski in Sec. 11.6 in [11], for the
transformations from the “f”-frame, see [7], (Eµ)′ = [Fνµv

ν ]′ = [F0iv
0]′ = F ′νµv

′ν = E′µ, and Eq.
(4) is obtained; the components Eµ transform by the LT again to the components E′µ. Let us

take in (5) that E1 = Ex, ... , B1 = Bx, ... , ε0123 = 1, dx0 = dt, .... , dx3 = dz, then in
the “f”-frame the second covariant expression in (5) corresponds to the expression (EB) that is
used in [1]. In a relatively moving inertial frame S′ the LT (4) will give that E′0 and B′0 will be
different from zero and these terms cannot exist in the approach from [1], which deals with the
expression (EB), i.e., with the fields as the 3-vectors.

In the usual formulation the physical meaning of 3-vectors E and B is determined by the the
Lorentz force as a 3-vector F =qE + qu×B and by Newton’s second law F = dp/dt, p =mγuu.

However, in the 4D spacetime, the Lorentz force K is not a 3-vector, but it is a 4D geometric
quantity. K is the contraction of the electromagnetic 2-form F with particle’s 4-velocity u (it
is defined to be the tangent to its world line). The components of K in the standard basis are
Kµ = qFµνu

ν , where uµ is the 4-velocity (components) of a charge q, or with Eµ and Bµ, using
the decomposition of Fµν , (3), they become

Kµ = q[(vµEν − vνEµ) + εµναβv
αBβ]uν . (7)

In the 4D spacetime, the physical meaning of Eµ and Bµ is determined by the Lorentz force
Kµ and by the 4D expression for Newton’s second law Kµ = dpµ/dτ , pµ = muµ, where pµ is
the proper momentum (components) and τ is the proper time. All components Eµ and Bµ,
thus E0 and B0 as well, are equally well physical and measurable quantities by means of the
mentioned Kµ and the equation of motion, i.e., the 4D expression for Newton’s second law.
Obviously, regardless of the fact that majority of physicists believe that only the 3-vectors E
and B are physical and measurable quantities, in the 4D spacetime, the 4D geometric quantities
are properly defined both theoretically and experimentally. In view of this discussion it is obvious
that the question what physically are E0 and B0 is equivalent to the question - what is the
temporal component x0 of the position 4-vector. This is particularly visible if the Einstein
synchronization is replaced by the “radio” synchronization in which the space and time are not
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separated, see Eq. (9) below. Then, the usual 3-vector r, and similarly the 3-vectors E and
B, are meaningless. This fundamental difference between the usual formulation with the 3D
quantities and the formulation with the 4D geometric quantities is exposed in much more detail,
e.g., in [24].

It is also shown in, e.g., [5, 6, 15] that the LT of the 4D Eµ and Bµ, (4), are in a true agreement
(independent of the chosen inertial reference frame and of the chosen system of coordinates in
it) with all experiments in the electromagnetism, whereas it is not the case with the UT of the
3D E and B, (2). Thus, for example, it is shown in [5] that the conventional theory with the
3D E and B and their UT yields different values for the motional emf ε for relatively moving
inertial observers, ε = UBl and ε = γUBl, whereas the approach with 4D geometric quantities
and their LT yields always the same value for ε, which is defined as a Lorentz scalar, ε = γUBl.
This result is very strong evidence that the usual approach is not relativistically correct, i.e.,
it is not in agreement with the principle of relativity. It is for the experimentalists to find the
way to precisely measure the emf ε for the considered problem of a conductor moving in a static
magnetic field and to see that in the laboratory frame ε = γUBl and not simply ε = UBl.
That problem is of a considerable importance in practice. The similar discussion with the same
conclusions was presented for the Faraday disk in [6]. In the already mentioned [15] and in [25]
the Trouton-Noble paradox is considered. It is shown that in the geometric approach with 4D
quantities the 4D torques will not appear for the moving capacitor if they do not exist for the
stationary capacitor, which means that with 4D geometric quantities the principle of relativity is
naturally satisfied and there is not the Trouton-Noble paradox. The same conclusion holds in the
low-velocity approximation β � 1, or γ ' 1. It is also shown in the same geometric approach
with 4D torques that there is no Jackson’s paradox [24] and the “charge-magnet paradox” [22].

At this point it is worth noting that in the mathematically correct approach, in general, there
is no room for the 3-vectors in the 4D spacetime. Let us better explain that statement. It is
written in [1] after Eq. (7) that: “F = Bxdy ∧ dz + Bydz ∧ dx + Bzdx ∧ dy = B · dS where
the differential forms expression has been converted back to three-vector notation and dS is
the differential area.” However, such an equality is mathematically impossible and incorrect.
Namely, in the mathematically correct formulation dx, dy, dz have to be understood as
differential 4-vectors dx1, dx2, dx3, respectively, the 4D geometric quantities that are properly
defined on the 4D spacetime; the wedge product refers to such 4D quantities and not to the usual
scalar differentials. On the other hand, B and dS, as geometric quantities in the 3D space, are
constructed from the components and the unit 3-vectors i, j, k, e.g., B =Bxi +Byj +Bzk. The
unit 3-vectors have nothing to do with the basis in the 4D spacetime. The LT are properly
defined on the 4D spacetime and they cannot transform the 3-vectors. Hence, in the 4D
spacetime it is not mathematically correct to state as in [1]: “.. the expression in (6) reduces
to δαEB = (e/~)

∫
F = (e/~)

∫
B · dS which is equivalent to the 3-vector expression (2).” In the

4D spacetime the covariant expression ((e/~)
∫
F ) is the correct one, but it is not the case with

the usual expression for the magnetic flux with the 3-vectors ((e/~)
∫

B · dS); they cannot be
equal. The same objection refers to all other relations with the 3-vectors in [1]. Hence, in this
geometric approach, using (1) and (5), the manifestly covariant expression for the AB phase
difference becomes

δαEB = (−e/2~)

∫
[(vµEν(x)− vνEµ(x)) + εµναβv

αBβ(x)]dxµ ∧ dxν . (8)

In Sec. 3 in [1] it is investigated “the usual magnetic AB set-up of an infinite solenoid but
with a time dependent magnetic field and vector potential, i.e., B(t) and A(t).” As noted in [1]
for that situation the scalar potential is still zero, φ = 0. At first, it is worth mentioning that, as
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explained in Sec. 3 in [3], in a correct covariant formulation there is no static case. The 1-form
A (A = Aµdx

µ) and the Faraday 2-form F are both, always function of the position four-vector
x; A(x) and F (x). If, for example, the usual 3-vector fields A(r), B(r) do not explicitly depend
on the coordinate time t in one frame, then the LT will mix the time and space coordinates;
they cannot transform the spatial coordinates from one frame only to spatial coordinates in a
relatively moving inertial frame of reference. What is static case for one inertial observer is not
more static case for relatively moving inertial observer, but a time dependent case. Furthermore,
if an observer uses the “radio” synchronization and not Einstein’s synchronization, then the space
and time are not separated and the usual 3-vector r is meaningless. As can be seen from Eq.
(13) in [3] the components of the position 4-vector x in the commonly used coordinate basis
with Einstein’s synchronization and that one with the “radio” synchronization are connected as

x0r = x0 − x1 − x2 − x3, xir = xi, (9)

and the same relation holds, e.g., for (A0
r , A

i
r), or (E0

r , E
i
r).

This consideration suggests that the results from Sec. 3 in [1] for the time dependent, infinite
solenoid, have to be reexamined using the correct covariant formulation (8). We shall only
discuss the AB phase difference determined by Eqs. (8) and (9) in [1]. It is calculated using Eq.
(7) from [1]. This will be compared with (8). As already mentioned above, in the 4D spacetime,
Eq. (7) from [1] is not mathematically correct and the same holds for Eqs. (8) and (9) from
[1], which deal with the 3-vectors. The part of the AB phase difference with Bµ from (8) is
δαB = (−e/2~)

∫
εµναβv

αBβ(x)dxµ∧dxν and it replaces Eq. (8) from [1]. Only in the “f”-frame
that part becomes δαB = (−e/2~)

∫
ε0ijkv

0Bk(x)dxi ∧ dxj and, as can be seen by the use of
B1 = Bx, etc. that mathematically correct expression corresponds to Eq. (8) from [1], i.e., to
δαB = (e/~)

∫
B · dS. The essential difference is that all quantities in this covariantly defined

δαB are properly defined in the 4D spacetime and they correctly transform under the LT, like
(4), which is not the case with the 3D quantities from Eq. (8) in [1].

The part of the AB phase difference with Eµ from (8) is

δαE = (−e/2~)

∫
(vµEν(x)− vνEµ(x))dxµ ∧ dxν (10)

and, the same as for δαB, it is the same quantity for all relatively moving inertial observers and
for all bases used by them. Only in the “f”-frame δαE from (10) becomes

δαE = (e/~)

∫
v0Ei(x)dxi ∧ dx0 (11)

and it can be compared with Eq. (9) from [1]. For that comparison Fµν is written in terms of
Aµ as Fµν = ∂µAν−∂νAµ. In that expression it is considered that Aµ are the primary quantities
whereas Fµν are derived from them. But, as clearly shown in [15], the F field is the primary
quantity for the whole electromagnetism and not the four potential, which is gauge dependent.
However, here, for the comparison with [1], we use the above relation with Aµ. Then, (3) is
used to get Eµ in terms of Aµ, Eµ = Fαµv

α = (∂αAµ − ∂µAα)vα. In the “f”-frame E0 = 0 and
Ei = (∂0Ai − ∂iA0)v

0, what corresponds to the components of the usual three-vector E, e.g.,
E1 corresponds to Ex = −∂Ax/∂t− ∂xφ; remember that if Aµ is written in the usual notation
it is Aµ = (φ,−Ax,−Ay,−Az) and in the “f”-frame vµ = (1, 0, 0, 0). Hence, in the “f”-frame,
δαE = (e/~)

∫
(∂0Ai−∂iA0)dx

i∧dx0, which for A0 = 0 becomes = (e/~)
∫
∂0Aidx

i∧dx0 and, by
the procedure from [1], it corresponds to Eq. (9) in [1], i.e., to δαE = (−e/~)

∫
B · dS = −δαB.

Thus, only in the “f”-frame and for A0 = 0 “the two parts cancel exactly.” Observe that the
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condition A0 = 0 is not a Lorentz covariant condition; in a relatively moving inertial frame
A0 will be 6= 0. Furthermore, as seen from (9), in the basis with the “radio” synchronization
the temporal and spatial components of Aµ cannot be separated, which means that in the 4D
spacetime the condition A0 = 0 has not a well-defined meaning. The similar objections hold for
the whole discussion presented in [26].

3. The Aharonov-Bohm effect in terms of fields

It is really surprising that both in all numerous theoretical discussions, e.g., [1, 2, 27, 28,
26], in the experiments with microscopic solenoids [29] and also in the recent experiment with
macroscopic solenoid [30], it is never noticed that in the rest frame of the solenoid there are
always external static electric fields for stationary, resistive conductor carrying constant current.
In an ohmic conductor there are quasistatic surface charges, which generate not only the electric
field inside the wire driving the current, but also a time independent electric field outside it.
That electric field is proportional to the current, see, e.g., Sec. 4 in [12] and references therein.
As mentioned in [12] the existence of such quasistatic surface charges was first pointed out
by Kirchhoff, Refs. [18-20] in [12]. There are no analytic solutions for these surface charges
and the external electric fields for the case of finite solenoids; for an infinite solenoid see [31].
The distribution of the surface charges and the magnitude of the induced electric fields depend
not only on the geometry of the circuit but even of its surroundings. These external electric
fields from steady currents are firmly experimentally confirmed, see, e.g., [12], and they are well-
known in electrical engineering. In [12], two other contributions to the external electric field are
discussed, but, as explained in Sec. 10 in [3], they are of no concern here. It is worth mentioning
that the expression from Sec. 4 in [12] is for a cylindrical wire of length l carrying a constant
current I and that wire is a part of a square circuit. That expression is not appropriate for a
finite solenoid with steady current. In [31] an infinite solenoid with steady current is considered
and it is appropriate for the case considered in [1]. There, in [31], a uniform cylindrical resistive
sheet of the radius a with a “line” battery with terminals at potentials ±V0/2 driving current
azimuthally in it is considered. In Sec. IV, [31], it is presented (i) the magnitude of the electric
field outside the solenoid, Eq. (11),

E = (V0/π)(a/rρ), (12)

where r and ρ are the polar radii measured from the center (axis) and from the baterry
(respectively), and (ii) the electric lines of force, Fig. 3. It is visible from Fig. 3. in [31] that
the electric field has radial and poloidal components, where the latter ones follow the direction
of the current just outside the solenoid in the same way as the magnetic vector potential.

In the recent experiment [30] the absence of electromagnetic forces outside the solenoid that
are predicted by Boyer’s force picture [32] has been experimentally investigated by means of a
time-of-flight experiment for a macroscopic solenoid. It is looked for a time delay for electrons
passing on opposite sides of the solenoid. As discussed above in the generally accepted theory
the electron wave packets are influenced by nonzero vector potential, i.e., by the quantum action
of the magnetic flux even when electrons pass through the field-free regions of space. On the
other hand in Boyer’s semiclassical theory [32] there is a back-action force of the solenoid on the
electron, which gives rise to a time delay and to a phase shift that exactly matches the AB-phase
shift. It is shown in [30] that there is no time delay and it is concluded that there are no fields
predicted by Boyer’s force picture [32]. In his comment on the results obtained in [30] Boyer
[33] stated: “the Aharonov-Bohm phase shift has never been observed for such a macroscopic
solenoid, ...” In [33], it is also argued that if the solenoid resistance is large, as in [30], then the
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back forces will be small and there is no time lag, but for the microscopic solenoids it is the
opposite case. It has to be pointed out that neither the authors of [30] nor Boyer [32, 33] knew
anything about the electric fields caused by the quasistatic surface charges that exist outside the
resistive conductors carrying constant currents. This means that it is not true that the paper
[30] shows experimentally that forces cannot be responsible for the magnetic AB phase shift.
The electric forces caused by the mentioned quasistatic surface charges have nothing to do with
Boyer’s force picture, [32, 33]. Thus, the main result from [30] about the absence of the time
delay does not imply that the electrons travel in a field-free region. Obviously, the electric fields
from quasistatic surface charges have to be taken into account for the explanation of the AB
phase difference in the magnetic AB effect as well, i.e., in the usual magnetic AB set-up of an
infinite solenoid, which is considered in [1] and also in the case of finite macroscopic [30] and
microscopic [29] solenoids. From the viewpoint presented here the AB phase difference in the
magnetic AB effect is not due to the vector potential, i.e., according to Eq. (2) from [1] due to
the quantum action of the magnetic flux, but it is due to the mentioned external electric field
from stationary solenoids with steady currents. In that case, contrary to the generally accepted
opinion, the electron does not travel in the field-free region, but the electron wave packets are
locally influenced by the electric field. A similar expression as (11) is obtained in [34], Eq. (28),
but their procedure is not relativistically correct and the 3D electric field that enters into their
Eq. (28) is proportional to the square of the current.

In order to clarify the situation from the experimental viewpoint we consider that some new
experiments are required: the measurement in a single experiment of the AB phase shift and
the time delay, as suggested in [33], and the measurement of the mentioned external electric
fields separately from AB-studies.

The above consideration implies that in the expression for δαEB (8) there is no need to take
into account the magnetic part δαB, i.e., the non-local effect of the magnetic field. In the 4D
spacetime only the local effects are important and physically justified. This means that from the
viewpoint of this approach with 4D geometric quantities the AB phase difference is even for the
magnetic AB effect exclusively determined by the covariant expression δαE from (10), i.e., by the
local influence of the 4D electric field. If the rest frame of the solenoid, the laboratory frame, is
taken to be the “f”-frame then δαE is given by Eq. (11). In our opinion the magnetic part δαB
of δαEB (8) could be taken into account only in the case that the solenoid’s magnetic field is
not entirely restricted to the coil’s interior but exists in the coil’s exterior as well, i.e., along the
electron’s trajectory. The same conclusion that only the local effect of the 4D electric field, i.e.,
δαE (10) ((11)) is important and physically meaningful holds in the same measure for the time
dependent set-up that is considered in Sec. 3 in [1]. Thus, in that case there is no cancellation of
the non-local effect of the magnetic field, δαB, with the local effect of the electric field, δαE (10)
((11)), because, as explained above, only the electric field from the solenoid with current exists
in the region outside the solenoid and consequently it can locally influence the electron travelling
through that region. It is interesting that, as can be seen from Sec. 4 in [35], if the current in
the solenoid varies linearly with time then it creates a time independent external electric field,
see Eq. (8) and Fig. 1 in [35]. Hence, for the solenoid with such a time-dependent current there
will be no time-dependent AB phase shift although only δαE (10) ((11)), the electric part of
δαEB (8), is considered to be physically correct and justified.

Note that in this approach with the 4D geometric quantities the 3D quantities from the usual
approaches, e.g., from [1, 26, 12, 34, 35], etc. have to be interpreted in a different way. Thus,
for example, the components of the electric field 3-vector in [1] have to be understood as the
spatial components in the standard basis of the 4D electric field; the rest frame of the solenoid is
taken to be the “f”-frame and therefore the temporal component E0 = 0 (also B0 = 0). Also, in
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this geometric approach the components Kµ of the Lorentz force are given by (7). As discussed
above, in the case considered in [1] only the electric part of K from (7) is physically important.

4. Conclusions

As seen from the preceding discussion the correct covariant formulation of the AB phase shift
(8) deals with the 4D geometric quantities that properly transform under the mathematically
correct LT (4). In the 4D spacetime Eq. (8) replaces Eqs. (8) and (9) from [1], which deal with
the 3D quantities that transform under the UT (2). Both, the 3D quantities and their UT (2) are
ill-defined in the 4D spacetime. As proved in [4-9], contrary to the generally accepted opinion,
the UT (2) are not the mathematically correct LT. The main result that is obtained in this paper
is that even for the magnetic AB effect (a stationary solenoid with resistive conductor carrying
either steady current or the current that varies linearly with time) the AB phase difference is
exclusively determined by the covariant expression δαE from (10), i.e., by the local influence of
the 4D electric field. Thus, here, it is shown that in the 4D spacetime only the electric part of
δαEB (8), i.e., δαE (10) ((11)) is physically correct and meaningful. The reason for it is that
there are static electric fields outside a stationary, resistive conductor carrying steady current,
which means that it is not true that, e.g., in experiments [29, 30], the electron travels in the
field-free region of space. The existence of the mentioned electric fields is firmly experimentally
confirmed; for some experiments see, e.g., [12] and references therein. All this together shows
that the magnetic AB phase shift considered in [1] is not a topological phase shift.

In Sec. 7.1 in [3] it is shown that the external static electric fields, the “relativistic” second-
order electric fields, would need to exist not only for resistive conductors with steady currents but
even for superconducting solenoids with steady currents. In Sec. 7.2 in [3] different experiments
for the detection of the second-order electric fields outside a stationary superconductor with
steady current are discussed. Furthermore, what is very important for the explanation of the AB
effect, in Sec. 8 in [3] such second-order electric fields are predicted to exist outside a stationary
permanent magnet as well. As discussed in Sec. 10 in [3], these results could explain the
experimentally observed fringe shift for the magnetic AB effect even in Tonomura’s experiments
[14] in terms of previously overlooked electric forces and not, as generally accepted, in terms of
nonzero vector potentials.

Similarly, the qualitative theoretical explanations of the quantum phase shifts in terms of the
classical forces as the 4D vectors in the Aharonov-Casher and the Röntgen effects are presented
in [7, 36]. Furthermore, in [37], the dipole moments are quantized and it is shown that the
expectation value for the quantum force 4D vector is not zero in the case of the Aharonov-
Casher and the Röntgen effects and in the neutron interferometry. Hence, in these experiments
too the phase shifts are not due to force-free interaction of the dipole, i.e., they also are not the
topological phase shifts.

The covariant AB effect in terms of F and not in terms of a vector potential is also investigated
in [38].

It is interesting to note that recently another local explanation of the AB effect is proposed
in [39]. There, it is argued that if the solenoid in the AB effect is treated in the framework of
quantum theory then the effect can be explained by the local action of the field of the electron
on the solenoid. In some respects there is a similarity between Boyer’s calculation [32, 33]
and Vaidman’s determination [39] of the AB phase shift. Boyer in [32, 33] calculates the force
exerted by the electron on a solenoid (represented by a line of magnetic dipoles) and then
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relies on Newton’s third law to obtain a back-action force of the solenoid on the electron. The
same Boyer’s force approach is investigated in [30] but a solenoid is considered as a stack of
current loops. However, Newton’s third law is violated for the electromagnetic interaction and
to overcome this difficulty a hidden momentum is often introduced, particularly in the case with
current loops, see, e.g. [30, 40] and references therein. But, as shown, e.g., in [3] and [22], if
an independent physical reality is attributed to the 4D geometric quantities and not, as usual,
to the 3D quantities, then there is no need for the introduction of some “hidden” 3D quantities
and there are no electromagnetic paradoxes. Vaidman, in [39], see Fig. 4 in [39], considers that
the electron produces change in the magnetic flux of the solenoid, which causes an electromotive
force on charged solenoids (in his example). This leads to the change in their velocity and to the
shift of the wave packet of the cylinders and finally to the correct expression for the AB phase,
Eq. (5) in [39] (arXiv: 1301.6153). Observe that this phase shift is for the source (solenoids)
and not for the passing electron. Then, Vaidman states: “Since in quantum mechanics the wave
function is for all parts of the system together, the change of the wave function of the source leads
to observable effect in the interference experiment with the electron.” (See Eqs. (8) and (9) in
the first paper in [39] for the change in the total wave function of the electron and the solenoid.)
It is worth noting that in Boyer’s picture [32, 33] it is impossible to detect the predicted force
on the solenoid since it requires the detection of the force of a single electron on a macroscopic
object. For the same reason, in Vaidman’s picture [39], it is impossible to detect the mentioned
electromotive force and the change in the angular velocity of the solenoids. Thus, both Boyer’s
force and Vaidman’s electromotive force cannot be experimentally verified, which means that
neither of these approaches have some physical, experimental, foundation.

On the other hand, the theory presented here is based on the existence of the static electric
fields outside a stationary, resistive conductor carrying steady current, and these fields are
already firmly experimentally verified.
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[22] Ivezić T 2012 Preprint physics.gen-ph/1212.4684
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