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Abstract. At the root of the tensions involved in modeling the quantum dynamics of
gravitating systems are the subtleties of quantum locality. Quantum mechanics describes
physical phenomena using a theory of non-local phase relationships (non-local in the sense
that quantum states maintain a space-like coherence that is acausal). However, the principle of
equivalence in general relativity asserts that freely falling frames are locally inertial frames of
reference. Thus, gravitating systems are often described using constituents that are freely falling,
undergoing geodesic motion defining well localized trajectories. The canonical proper time
formulation of relativistic dynamics is particularly useful for describing such inertial constituents
using the coordinates of non-inertial observers. The physics of the simplest of gravitating
inertial quantum systems, consistent with presented experimental evidence, will be examined.
Subsequently, descriptions of both weakly and strongly gravitating quantum systems will be
developed using canonical proper gravitation.

1. Introduction
Quantum mechanics remains an enigmatic formulation when examined through intuitions framed
in classical mechanics. Some of the fundamentals of quantum mechanics are itemized as follows:

• Measurements cannot be objectified in quantum physics. Certain physical parameters (like
position and momentum) cannot be simultaneously measured in a single measurement.

• Quantum formulations of physical systems inherently incorporate unknown and unknowable
quantities (as demonstrated in EPR entanglements[1], and Bell’s hidden variable
analysis[2]).

• What can be known about a quantum coherent system is contained in its quantum state
vector |Ψ〉, state components Ψm, or wave function Ψ(x, t), and probabilities Ψ∗mΨm or
Ψ∗(x, t)Ψ(x, t)dx.

• A given system is not the wavefunction itself, since wavefunctions can only be used to
describe outcome likelihoods consistent with physical conservation laws. The system will
be measured to be in one state or another, not spread amongst a set of states. This is even
true of classical distributions of unmeasured states. However, for classical distributions the
constituent states of an ensemble can in principle be known on some level.

As an illustration of the difference between a classically coherent system and a quantum
coherent system, consider a wave-front propagating through space. For a classical ocean wave
breaking upon a beach, each floating plankton and grain of sand on the beach is a detector
of the classically coherent wave. However, for a quantum wave breaking upon detectors, there
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is no intermediate detection, and only one detector will measure the particle, resulting in a
“collapse of the wavefunction” describing its propagation. Subsequence to that detection, the
description of the quantum system provided by the prior wavefunction becomes obsolete. Any
measurement of a quantum system fixes the immediate past of that system to be consistent with
that particular measurement, but leaves any future measurements uncertain while the system
remains coherent.

The double slit experiment provides a good demonstration of inherent quantum behaviors.
In the double slit experiment illustrated in Figures 1, particles are incident from the left upon a
solid wall that has only two slits through which any particle can pass without being absorbed.
Classical particles either hit the barrier or hit the screen on the right, clustering just behind the

Figure 1. Illustration of the result of 100 particles incident from the left upon a barrier with two
horizontal slits for classical particles (left) vs quantum particles (right).

slits. However, quantum particles are singly detected on the screen on the right in a distribution
that is widely spread over the screen in a manner characterized by a wave that coherently passes
through both slits. Notice that if the quantum particles are continuously observed, they behave
like the classical particles. Furthermore, if any quantum particle is detected going through either
slit, the particle is later detected as if it were just a classical particle (or perhaps diffracted wave)
going only through that slit. Particles that are not detected going through either slit maintain
space-like quantum coherence throughout the propagation and self-interfere going through both
slits. Any measurement that localizes the propagation of the particle through one slit or the
other breaks its coherence. The phase relationships in this experiment are determined purely
by the classical geometry, and remain unchanged irregardless of any motions of the observer.

There are general constraints upon measurements of quantum systems. If one makes many
measurements upon a set of identically prepared quantum coherent systems, the average of
those measurements satisfy the uncertainty principle ∆x∆p ≥ h̄

2 , where ∆Q is the root mean
squared deviation of measurements of quantity Q from its average value. This principle follows
from the triangle identity for the magnitudes of two state vectors and their resultant, and the
non-commutivity of the momentum and position operators[3]. This non-commutivity prevents
any single measurement of both the momentum and position of a quantum state.

The incorporation of the non-local behaviors of quantum systems into gravitation is
not trivial. If the gravitational interaction itself is to be quantized, the non-linear effects
become particularly difficult to understand, especially for strongly gravitating systems. Also,
experimental evidence presented in the next section demonstrates that gravitational quanta
cannot be the mechanism by which space-time localization occurs during the gravitation of
quantum coherent systems. In other words, space-time coordinates cannot “bubble up” during
the quasi-stationary gravitation of coherent systems in a manner that localizes regions of those
systems. The coordinates themselves cannot be entangled with the systems.

Classical gravitation is unique amongst interactions in that vastly differing objects
with identical geometric initial conditions will follow identical trajectories, allowing the
geometrization of gravitational dynamics. Locally, the motions of objects are essentially the
same as those of inertial objects as viewed by accelerating observers, allowing descriptions of
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the dynamics in terms of various coordinate representations of those motions. The principle
of equivalence effectively equates the inertial mass of an object with the mass determining
the strength of gravitational coupling. This characteristic of gravity allows classical motions
of arbitrary local objects in terms of unique geodesics independent of gravitational couplings.
Covariance then allows one to use any convenient coordinates to describe those motions.

What follows will explore the consequences of the principle of equivalence on the gravitation,
co-gravitation, and self-gravitation of quantum coherent systems. Section 2 summarizes some of
the experiments involving quantum gravity, illustrates inertial systems as viewed by accelerating
observers, and develops canonical proper gravitation. Section 3 explores some properties of a
non-singular black hole, in particular demonstrating that quantum non-locality can in principle
prevent gravitational collapse to a singularity. Finally, section 4 will briefly discuss the modeling
of gravitating quantum fields.

2. Gravitation and Quantum Coherence
2.1. Experiments in Quantum Gravity
During the 1970’s, experiments[4] were performed on quantum coherent neutrons undergoing
self-interference in the Earth’s gravitational field. Those experiments involved a form of double
slit interference illustrated in Figure 2. In the experiment, singly traversing neutrons are counted

Figure 2. Diagram of apparatus used to demonstrate quantum coherence of gravitating neutrons.
Neutrons incident upon aperture Ao self-interfere through apertures A1 and A2, and are detected via
counters C1f and C2f for which no classical trajectory for the neutrons exists.

at the two counters C1f and C2f for which no classical trajectory exist for the incident neutrons.
The apparatus is then rotated about the axis of incidence of the neutrons, changing the relative
gravitational potential (and therefore the relative phase) between A1 and A2. The formulation of
the interference pattern in the expected difference in counts between the counters requires use of
both Newton’s constant GN and Planck’s constant h̄ in same formula, which was verified by the
experiment. One could therefore conclude that gravitating quantum systems maintain spatial
coherence. This means that gravitational interactions cannot break quantum coherence in order
to establish spatial and temporal relationships, despite common interpretations that gravity
is geometry. The establishment of the space-time geometry that localizes the propagation of
each neutron through the slits cannot also localize the gravitating neutron at either slit. The
experiment verifies the principle of equivalence for a quantum system, which will here be stated
as follows: The coherence state of an inertial system is not affected by the motions of the observer.
The result from the Earth-based laboratory should be indistinguishable from the result on an
accelerating spaceship and apparatus with incident inertial neutrons.

Other experimental observations have demonstrated the maintenance of quantum coherence
during gravitation:
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• Interference in ticks of quantum atomic clocks superposed across differing gravitational
potentials due to Compton frequencies (temporal coherence)[5].

• Wannier-Stark ladders (interference between fermions on rungs of an optical ladder[6]),
which can be used as precise gravimeters[7].

• CMB photons maintain coherence for 14 billion years over a change in cosmological scale
of 1100 (very dynamic!), while sometimes undergoing gravitational lensings.

• Red-shift / time dilation effects are important even for everyday behaviors of Global
Positioning Satellites (GPS), resulting in a shift of +46ms/day from gravity and -7ms/day
from motions (the GPS system requires 50 nanoseconds/day accuracy)[8].

• Precession of superfluid vortex arrays in Earth’s gravitational field.

One can interpret these observations as demonstrating that the establishment of geometric
relationships in a quantum coherent gravitating system does not break quantum coherence.

2.2. Uniform Proper Acceleration
Examine the differential Lorentz transformation from the (momentary) rest frame of a system
with constant proper acceleration (cτ, zP ) to an inertial Minkowski frame (ct, z) expressed in
terms of the rapidity ζ:

dct = cosh ζ dcτ + sinh ζ dzP ,

dz = sinh ζ dcτ + cosh ζ dzP .
(2.1)

For an observer at rest in the proper frame of reference, (2.1) implies that

vP =
dzP
dcτ

= 0 ⇒ dct

dcτ
= cosh ζ ,

dz

dct
= tanh ζ. (2.2)

Since the direction of acceleration remains unchanged, the rapidities characterizing the Lorentz
velocity transformations add, implying that

v′

c
= tanh(ζ + ζ ′) ⇒ δvP

c
= tanh(δζ) = δζ. (2.3)

This directly relates the proper acceleration a to the rapidity ζ:

dvP
dτ
≡ a, dζ

dτ
=
a

c
→ ζ =

aτ

c
. (2.4)

Therefore, the solution for the trajectory undergoing uniformly accelerating motion using special
relativity is given by

z(τ) = zP + c2

a

(
cosh aτ

c − 1
)
,

t(τ) = c
a sinh aτ

c ,

v(τ)
c = tanh aτ

c

(2.5)

where zP is the proper coordinate of the accelerating system, a is the proper acceleration of
that system, and τ is the proper time coordinate for that system. The system is seen to be
undergoing hyperbolic motion.
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2.2.1. Clocks and redshifts
A particularly useful coordinate system can be developed using a spatially dependent form

for the local proper acceleration[9]:

a =
c2

zP
. (2.6)

Using this identification for the proper accelerations in (2.5), all of the trajectories with proper
locations zP approach a single outgoing light-like asymptote passing through the origin, which
is a (shared) horizon with proper coordinate zP = 0. The coordinates for an inertial observer
(ct, z) corresponding to accelerating coordinates (cτ, zP ) satisfy

ct = zP sinh
cτ

zP
, z = zP cosh

cτ

zP
. (2.7)

Direct coordinate transformation properties can immediately be developed between the inertial
observer and the accelerating observers within the shared causal patch of space-time.

A depiction of two such accelerating trajectories (2.7) is shown in Figure 3. In the figure, all

1 2 3 4 5

z

Figure 3. The traversal of light rays as detected by uniformly accelerating observers, and their usefulness
in constructing a standard clock.

observers with accelerating coordinates are momentarily at rest relative to the inertial observers
at t = 0 = τ , with momentarily corresponding proper locations z = zP . This surface represents
a surface of synchronicity for the accelerating clocks with the inertial clocks. The trajectories of
zP = 1 and zP = 3 are depicted by bold hyperbolas, and the shared horizon of the accelerating
observers zP = 0 is depicted as the outgoing light-like bold line through the origin of the
Minkowski coordinates.

One can compare the temporal dilations for the different accelerating observers by examining
the detection of two light beams emitted simultaneously by two observers towards each other at
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τ = 0 = t, as demonstrated in Figure 4. In the first (bottom) frame, the clocks at two separate
proper coordinates are synchronized at τ = 0 as the rod is momentarily at rest with respect
to the Minkowski frame, and the photons are emitted at each location towards the other. In
the second frame, the ingoing photon has traversed along a greater proportion of the proper
intervals than has the outgoing photon. By the third frame, the ingoing photon has reached the
innermost observer at the proper time demonstrated on the left clock, as the outgoing photon
continues towards the outermost observer. The outgoing photon finally reaches the outermost
observer in the fifth frame at the proper time indicated. The innermost observer detects a
blue-shifted photon, and has a slower moving clock, relative to the outermost observer.

A standard clock can be constructed by the observers in Figure 3 using a photon
emitter/detector facing outward at the innermost observer, and a mirror facing inward held
by the outermost observer. One tick of such a clock is depicted by the emission of an outgoing
photon and the detection of it’s reflection. Such a standard clock will tick in the uniformly
accelerating system with uniform ticks ∆τ .

2.3. An Inertial Wavefront Described Using Accelerating Coordinates
Next, the propagation of an inertial neutron as it passes through a uniformly accelerating double
slit will be examined. The neutron will be assumed to move with a uniform momentum in the x-
direction, while the double slit barrier and detector will be assumed to uniformly accelerate in the
z-direction. A wavefront of the neutron is depicted from various perspectives in the illustrations
in Figure 5. In the leftmost set of sequential frames, the wavefronts, slits, and detector are
displayed on the Minkowski ct-z plane, with the x-direction of propagation suppressed, in
sequential snapshots as the proper time of each of the various observers progresses. The incident
particle wavefront is displayed in the lower frames as a gray plane progressing upward with fixed
z coordinate, becoming cylindrical surfaces after traversing the slits in the upper frames. The
asymptotes of the accelerating observer are drawn as the gray light cone with apex at the origin,
the double slit barriers are accelerating black solid lines, and the detector is an accelerating
black rectangle.

The middle frames in Figure 5 demonstrate the perspective of an inertial observer as the
wavefront approaches the uniformly accelerating barrier in the lower frames, becoming interfering
wavefronts in the upper frames prior to encountering the accelerating detector. This represents
the perspective from which the dynamics can be calculated most directly. The wavefront is a
vertical plane prior to the barrier, and interfering cylindrical surfaces subsequent to the barrier.
The frames on the right are from the perspective of the accelerating barrier and detector.
From this perspective, the approaching wavefront is no longer a vertical planar surface, and
the interfering surfaces droop due to the acceleration prior to detection.

2.4. Canonical Proper Gravitation
The canonical proper time formulation for relativistic systems[10, 11] can be quite useful in
providing insights into the dynamics of inertial systems using the coordinates of accelerating
observers. The canonical proper time generator K is defined to generate translations in the
proper time τ of the observed system using the observers’ coordinates via

[K, zj(τ)] = ih̄
d

dτ
zj(τ) , [K, pj(τ)] = ih̄

d

dτ
pj(τ) . (2.8)

These commutation relations are consistent with the proper time “Hamilton” equations given
by

∂K

∂pj
=
dzj

dτ
,

∂K

∂zj
= −dpj

dτ
. (2.9)
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Figure 4. The traversal of two photons between accelerating clocks.
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Figure 5. Various depictions of an inertial wavefront incident upon an accelerating double slit barrier.
The frames on the far left depict the wavefront and the accelerating barrier and detector on the Minkowski
plane (ct, z) with the x-direction suppressed. In the middle frames, the inertial wavefront, accelerating
barrier and accelerating detector are sequentially viewed by a stationary observer. In the frames on the
right, the inertial wavefront is viewed relative to the barrier and detector.
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If the relativistic momentum is to take the form pj = muj = mdzj

dτ , and the relativistic force is

of the conservative form
dpj
dτ = −∂U(z)

∂zj
, this results in a proper time translation generator of the

form

K =
p2

2m
+ U(z) +Ko. (2.10)

Description of the dynamics using this canonical proper formulation has the following features:

• K generates translations in the proper time τ of the observed system, with an eigenvalue
of the rest energy mc2.

• The formulation looks very similar to non-relativistic physics, but is fully relativistic! This
allows the use of techniques from non-relativistic quantum mechanics for solving relativistic
systems.

• It should be noted that this is not a Lorentz transformation, rather it is a canonical
transformation on the time variable. The temporal coordinate is the proper time of the
system, while the momentum and position coordinates (p,x) are those assigned by the
observer (which can be highly relativistic). The formulation generates equations of motion
of the observers’ coordinates for the system in terms of the proper time of that system, not
the observers.

The question remains how one determines the constant Ko. This constant can be related to
the standard energy Eo measured during production, detection, or a correspondence region of
propagation of the quantum state, as will be illustrated in the following examples.

2.4.1. A Plane Wave One of the simplest of quantum systems is that describing a plane
wave. A non-interacting quantum system with U(x) = 0 can generally have plane wave solutions

K =
p2

2m
+Ko , KΨ(x) = mc2Ψ(x) . (2.11)

The Hamiltonian formulation for this system has the usual square root form, which connects
the constant Ko to the energy of the wave via

Eo =
√

(pc)2 + (mc2)2 ⇒ Ko =
3(mc2)2 − E2

o

2mc2
. (2.12)

Thus, the canonical proper energy takes the form

K̂ =
p̂2

2m
+

3(mc2)2 − E2
o

2mc2
. (2.13)

2.4.2. Canonical proper acceleration Next, consider the uniformly accelerating system
examined in section 2.2. Since the solution is already known, one can instead determine the
equations of motion.

From (2.5), one can make the identifications

dz

dτ
= c sinh

aτ

c
=
∂K

∂pz
, and

dpz
dτ

=
d

dτ

(
m
dz

dτ

)
= ma cosh

aτ

c
= −∂K

∂z
. (2.14)

These equations immediately imply that

∂K

∂pz
=
pz
m

, and
∂K

∂z
= −ma

[
a

c2
(z − zPo)

]
, (2.15)
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which results in a generator for proper time translations of the form

K =
p2

2m
−ma

[
a

2c2
z2 +

(
1− azPo

c2

)
z

]
+Ko. (2.16)

In this equation, zPo is a coordinate of correspondence between the systems.
These steps can be analogously repeated to determine the Hamiltonian formulation for this

system:
dz

dt
=

pzc√
p2
z + (mc)2

=
∂H

∂pz
, and

dpz
dt

= ma = −∂H
∂z

. (2.17)

This results in a generator for time translations of the form

H =
√

(pc)2 + (mc2)2 −maz. (2.18)

The last term in (2.18) is akin to the usual mgz form for the gravitational potential energy in
elementary physics descriptions of motion in a uniform gravitational field.

To evaluate the integration constant Ko, note that a correspondence can be found such that

Eo =
√

(p⊥oc)2 + (mc2)2 −mazPo, (2.19)

which results in an integration constant Ko of the form

Ko = mc2 − (Eo +mazPo)
2 − (mc2)2

2mc2
+ma

[
a

2c2
z2
Po +

(
1− a zPo

c2

)
zPo

]
, (2.20)

where zPo = zo is appropriately chosen when pz = 0.
Writing p2 = p2

x + p2
z in (2.16), one obtains solutions to the equations of motion

x(τ) = xo +
pxoτ

m
and z(τ) = zPo +

c2

a

(
cosh

aτ

c
− 1

)
. (2.21)

The form of the space-time metric relates the proper time τ to the Minkowski time t via

(dcτ)2 = (dct)2 − dx2 − dz2 ⇒ dct = dcτ

√
1 +

(
pxo
mc

)2

+ sinh2 a τ

c
. (2.22)

Thus, the inertial and accelerating time coordinates can be related through the elliptic integral
of the second kind:

ct = i
c2

a

√
1 +

(
pxo
mc

)2

E(i
aτ

c
| 1

1 +
(pxo
mc

)2 ). (2.23)

2.4.3. Semi-classical co-gravitation Consider next a set of freely co-orbiting quantum
coherent (neutral) particles that are in composite spherically symmetric states. Experimentally,
stationary gravitation itself does not break the coherence of any of the constituent particles.
If one assumes that the local energy densities of the co-orbiting coherent quanta serve as
gravitational sources generating the background field, then by Birkhoff’s theorem (or Gauss’
law for gravitational fields as demonstrated by Newton), only the interior (mass) energy density
effects the local gravitation at a radial coordinate r. Such spherically symmetric shells can be
incoherently combined to construct a co-gravitating system with quantum components.

A semi-classical depiction of this thought experiment analogous to Bohr’s analysis of the
hydrogen atom is shown in Figure 6. To the extent that any particles are measured interior to
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Figure 6. A semi-classical incoherent sum of nested coherent gravitating particles acting as sources for
exterior particles.

a given co-gravitating particle, those measured particles serve as gravitational sources for any
given exterior particle. Assume that the orbital angular momentum of a circularly orbiting mass
m must be quantized using Bohr’s criterion Ln = mrnvn = n h̄. The gravitational source mass
interior to rn will be specified by Mn. Using arguments from elementary physics, the speed of
the mass and radius parameterizing this orbital must satisfy

vn =
GNmMn

nh̄
, rn =

n2h̄2

GNm2Mn
. (2.24)

As long as the dependence Mn assures that the radius increases with quantum number n, one
can develop a model where each interior mass contributes as a gravitational source for the
subsequent masses. A physical co-gravitating model is constructed by incoherently summing
symmetric shells of mass m to give interior mass Mn = nm for shell n. Equation (2.24) can
then be re-written in terms of the reduced Compton wavelength λm ≡ h̄

m c of the mass m and

the Planck length LP ≡ h̄
MP c

, giving

am =
(
λm
LP

)2
λm , En = −1

2

(
LP
λm

)4
mc2 ,

vn =
(
LP
λm

)2
c , rn = nam ,

(2.25)

where am is a gravitational Bohr radius associated with the mass m, and En is the orbital
energy of the mass in orbital n. In contrast to the behaviors of electrons in atomic physics, each
successive shell of co-gravitating masses experiences increased attraction due to the interior
masses. It is interesting to note that the semi-classical speeds of the masses, as well as their
gravitational binding energies, are independent of the orbital in this model.

2.4.4. Proper time quantum co-gravitating particles Next, explore the co-gravitation of
masses using the canonical proper time formulation. Replacing U(r) = mΦ(r) as the interaction
potential for the mass m in (2.10), the canonical proper time generator K takes the form

K =
p2

2m
+mΦ(r) +Ko, (2.26)

resulting in a canonical equation of motion of the form

d2xj

dτ2
= −∇jΦ(r). (2.27)
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If this equation of motion is to be consistent with geodesic motion on the geometry

d2xj

dτ2
= −Γjαβ

dxα

dτ

dxβ

dτ
, (2.28)

then for a stationary distribution with dxj

dτ = 0 geodesic motion requires that

d2xj

dτ2
=

1

2
gjµ

∂g00

∂xµ

(
dx0

dτ

)2

. (2.29)

As a quick calculation, consider a generalization of the exterior Schwarzschild geometry
obtained by simply giving the mass a radial dependency:

ds2 = −
(

1− 2GNM(r)

c2r

)
(dct)2 + 2

√
2GNM(r)

c2r
dct dr + dr2 + r2

(
dϑ2 + sin2 ϑ dϕ2

)
. (2.30)

If there is no radial dependency in the mass M(r), then this form can be diagonalized into
the Schwarzschild form using the Schwarzschild time tS 6= t. However, (2.30) has no physical
singularities except perhaps at the origin r = 0 for a radially dynamic geometry. For this metric
form, the potential that satisfies (2.29) and (2.27) has the form

Φ(r) = −GNM(r)

r
, (2.31)

which is the same as that for Newtonian gravitation, but includes space-time curvatures!
Substitution of this metric into Einstein’s equation gives

G0
0 =

1

r2

∂

∂r

2GNM(r)

c2
⇒ M(r)c2 =

∫ r

0
T 0

0(r′) 4πr′2dr′, (2.32)

which is precisely the interior mass corresponding to the energy density that curves the space-
time.

A general quantum co-gravitating system is developed by considering a stationary mass m
gravitating due both to a source mass M` which depends only on ` (the angular momentum
quantum number associated with the stationary quantum state), as well as self gravitation. The
proper energy form satisfies the stationary equation given by(

p̂2

2m −
GNmM`(r)

r +K`

)
ψ``z(r, θ, φ) = mc2 ψ``z(r, θ, φ) ,

ψ``z(r, θ, φ) = R`(r)Y
`z
` (θ, φ).

(2.33)

Re-writing the momentum squared operator as p ·p = −h̄2
[

1
r2

∂
∂r

(
r2 ∂

∂r

)
− L·L

h̄2r2

]
, one notes that

spherically symmetric forms are constructed by summing over the 2`+ 1 values of the index `z
using the spherical harmonic addition theorem,

∑̀
`z=−`

∣∣∣Y `z
` (θ, φ)

∣∣∣2 =
2`+ 1

4π
P`(1).

The reduced radial wavefunctions defined by u`(r/am) ≡ rR`(r) can be parameterized in

terms of the dimensionless variable ζ ≡ r/am, where as before am ≡ h̄2

GNm3 . This allows the

equation (2.33) to be re-written in a dimensionless form:

d2u`(ζ)

dζ2
− `(`+ 1)

ζ2
u`(ζ) +

(
2

ζ

)(
M`(ζ)

m

)
u`(ζ) = ε` u`(ζ) , (2.34)
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where the dimensionless expression ε` = −2
(
λm
LP

)4 mc2−K`
mc2

parameterizes the gravitational

binding energy of the mass m.
In analogy to the semi-classical case previously presented, the interior mass will be presumed

to be composed of particles of mass m`:

M`(ζ) =

∫ ζ

0
ρmass(ζ

′) dζ ′ =

∫ ζ

0

∑
all `′

n`′ m`′ u
2
`′(ζ
′) dζ ′, (2.35)

which represents an incoherent sum of the co-gravitating interior masses m`′ . This means that
in (2.34), the particle masses appear only in ratios, an explicit demonstration of the elegance of
the principle of equivalence.

For illustrative purposes, consider a single s-wave particle of mass m self-gravitating in a
spherically symmetric manner. The gravitating distribution takes the form demonstrated in

Figure 7. The metric component from (2.30) which has the form g00 = −
(
1− 2GNM(r)

c2r

)
, can

Figure 7. Probability density of a single self gravitating proper coherent mass.

be expressed in terms of the dimensionless functions

2GNM(r)

c2r
= 2

(
m

MP

)4 Pinterior(ζ)

ζ
, (2.36)

where Pinterior(ζ) represents the integrated probability density interior to radial coordinate
ζ = r/am. Notice that in this expression, the particle mass appears only in terms of its ratio
relative to the Planck mass MP , with Pinterior(ζ) defining a general functional form in the
coordinate ζ.

2.5. Global causal structure of gravitating mass
Quite often, diagrammatic techniques are useful for visualizing and interpreting important
aspects of a physical model. Penrose diagrams are space-time diagrams that have the following
properties:
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• Light rays travel along straight lines with slope ±1

• The whole of space-time fits on a single page

These properties allow the diagrams to be used to determine the global causal structure of the
given geometry.

Consider for example the Penrose diagram Figure 8 for flat Minkowski space-time. On the

Figure 8. Global causal structure of Minkowski space-time. The vertical axis represents ct (i.e., r = 0),
and the horizontal axis represents r (i.e., ct = 0). The left boundary represents an observer at rest at
r = 0. The lower right boundary (often referred to as skri minus, or past light-like infinity) represents
an outgoing light ray emitted from r = 0 at t = −∞, reaching r =∞ at t = 0. The upper right boundary
(often referred to as skri plus, or future light-like infinity) represents an ingoing light ray emitted from
r = ∞ at t = 0, reaching r = 0 at t = +∞. Each point on the diagram represents a spherical surface
(i.e., all ϑ, ϕ) at a given time.

diagram, observers of the same proper height are represented at r = 0, r = 1, and r = 10.
The scale is seen to compress in distant locations and times in order to contain the whole of
space-time on a finite diagram. An outgoing light-beam emitted from r = 0 at t = 0 traverses
equal spatial and temporal displacements on the diagram as displayed as a dashed line of slope
1. No event above this light-like line can be a cause of an event below it. However, there is no
spatial region in Minkowski space-time that is causally inaccessible from another over all times.

Energy density will curve the local space-time geometry, and modify the Penrose diagram,
sometimes to the extent that it will change the global causal structure of the geometry (as with
a black hole). For a dense star or self-gravitating mass such as in Figure 7, light rays are blue
shifted when approaching the center r = 0, and red shifted when receding. Using the conformal
space-time coordinates (i.e., coordinates that preserve the slope of light-like trajectories) needed
to construct a Penrose diagram, a ingoing light beam from past light-like infinity that reflects
off of (or passes through) r = 0 traverses a modified geometry, as illustrated in Figure 9.
The curvature effect at the time-like center r = 0 is due to the high energy density, plotted
as a proportionate density of shading on the diagram. For a high enough energy density, the
curvature near the center is eventually large enough to form a black object (which has a trapping
region within which outgoing light rays have decreasing radial coordinate) or a black hole (which
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Figure 9. Penrose diagram for a self gravitating high energy density. The global causal structure is the
same as that of Minkowski space-time.

manifests a horizon, within which there can be no cause that affects the exterior). In Figure 9,
the Schwarzschild (vacuum) geometry is valid in the region exterior to any energy density. The
past and future light-like infinities are familiar from the Minkowski space-time behavior of the
geometry far away from its center.

3. A Non-Singular Black Hole
One notable feature of (2.36) is that the term calculated from the general equation of motion
depends only upon the dimensionless radial variable ζ = r/am, resulting in solutions for self
gravitating masses that are always of the functional form demonstrated in Figure 7, regardless

of the size of the mass m. This means that only the term involving the ratio
(
m
MP

)4
determines

when this distribution can result in a sign change in a metric component at some finite radial
coordinate ζ. For the self-gravitating solution presented, no black hole is generated unless g00 > 0
which occurs only when m >∼ 0.63MP . Significantly for this calculation, quantum non-locality
prevents a singularity from ever forming regardless how large the self-gravitating mass!

As a concrete example, consider a non-singular Planck mass black hole m = MP . The metric
component −g00(ζ) is plotted in Figure 10. For large ζ far from the black hole, the metric
takes the Minkowski form g00 → −1. Similarly, very near the center ζ → 0 the metric likewise
takes a Minkowski form. At the center, the metric and all curvatures are finite because of the
quantum distribution consistent with non-locality and the uncertainty principle. However, in
the region between 0.4 <∼ ζ <∼ 2, the component g00 is positive, defining a trapping region within
which outgoing light rays will have decreasing radial coordinate ζ. Thus, the global geometry
separates into three regions: an exterior region, a trapping region, and an interior region, as
illustrated in the Penrose diagram for this system in Figure 11. On the diagram, the exterior
region is labeled on the lower right hand part of the diagram, and the interior region is the
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Figure 11. Penrose diagram of a non-singular Planck mass black hole.

upper left hand part of the diagram. The horizon of the black hole separates the exterior region
from the trapping region, and the inner trapping surface RTS separates the interior region from
the trapping region. Curves of constant time are everywhere space-like volumes, all terminating
on r = 0 (which is time-like and non-singular) and at the right apex of the diagram r = ∞ as
shown. Curves of constant radial coordinate are vertical in the interior and exterior regions, but
horizontal in the trapping region, as illustrated. Thus all light-like and time-like trajectories
necessarily have decreasing radial coordinate in the trapping region. There are no exotic energy
densities in the interior and exterior regions.

IARD 2014 IOP Publishing
Journal of Physics: Conference Series 615 (2015) 012014 doi:10.1088/1742-6596/615/1/012014

16



In the Penrose diagram 11, ingoing time-like or light-like trajectories can connect external
causes to effects in the trapping region or interior. However, all time-like or light-like trajectories
in the interior always terminate on a future boundary of the interior. This defines the object as
a black hole.

3.1. General Stationary Spherically Symmetric Distributions
The Schwarzschild geometry only represents the vacuum solution of a stationary, spherically
symmetric system exterior to any non-vanishing energy density. The most general, stationary,
radially symmetric metric form that is also valid in the interior region with non-vanishing energy
density can be written in the form[3]

ds2 = −
(

1 +
2[V (r) + Vo(r)]

c2

)
(dct)2 + 2

√√√√√(−2V (r)

c2

) (
1 + 2[V (r)+Vo(r)]

c2

)
(
1 + 2V (r)

c2

) dct dr

+dr2 + r2
(
dϑ2 + sin2 ϑ dϕ2

)
, (3.1)

which reduces to the form (2.30) in the exterior region Vo → 0 and V (r)→ −GN M
r .

The canonical proper time generator for the metric (3.1) consistent with previous assumptions
takes the form

K =
p2

2m
+mΦ(r) +Ko ⇒

∂

∂r
Φ(r) =

1 + 2V (r)
c2

1 + 2[V (r)+Vo(r)]
c2

∂

∂r
[V + Vo] (3.2)

In the interior region, the solution for the canonical potential Φ(r) is not trivially related to
general forms of the functions V (r) and Vo(r) as it was for the metric (2.30), but should be
calculable in terms of an integral. In addition, the condition of isotropy in Einsteins equation,
as well as any equation of state, relates Vo to V , which is again determined via the quantum
distribution of a self-gravitating mass. This means that the calculation of a physically meaningful
non-singular self-gravitating systems should be straightforward, though complicated. It is
expected that even a black hole resulting from such a non-singular self-gravitating system should
have no exotic energy density (i.e., no space-like energies, thereby violating energy conditions)
anywhere on the geometry.

Substitution of the metric (3.1) into Einstein’s equation directly relates the geometry to
the energy-momentum densities consistent with that geometry. By direct calculation, the T 0

0

component of the energy-momentum tensor takes the form

T 0
0 =

1

r2

∂

∂r

(
rV (r)c2

4πGN

)
(3.3)

This implies that if the function V (r) is rewritten in the general form V (r) = −GNM(r)
r , then

M(r)c2 = −
∫ r

0
T 0

0 4πr̃2dr̃. (3.4)

One can immediately interpret the function M(r) as the mass interior to a spherical region of
radius r.
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4. Beyond the Canonical Proper Generator K: Scattering in Quantum Gravity
To end the discussion, a generalization of the canonical proper formulation beyond the eigenvalue
problems discussed so far will be examined. Consider an invariant form for the generator K
expressed as follows:

K̂|ψm〉 = ih̄
dxµ

dτ

∂

∂xµ
|ψm〉 = −uµP̂µ|ψm〉 = mc2|ψm〉. (4.5)

Dynamics expressed in this form typically represent substantive quantum flows[12]. As
previously discussed, although the canonical variables used to develop expressions for the
generator K are generally those of observers in arbitrary motions, its eigenvalue is the invariant
energy of the system.

An analogous expression is given by the Dirac equation[14] for spinor fields. Consider the
expression on a locally flat space given by

1

Γ
ΓµP̂µΨ

(Γ)
(γ)(m~u, J, sz) = −(γ)

Γ
mcΨ

(Γ)
(γ)(m~u, J, sz), (4.6)

where (γ)
Γ = ±1 for the Γ = 1

2 representation. The substantive flow field for general coordinates

can be expressed in terms of the curvilinear matrix-valued 4-velocity Uβ defined using the
principle of equivalence

Uβ(x) ≡ ∂xβ

∂ξµ
Γµ

Γ
. (4.7)

In this expression, the ξµ are locally flat coordinates that can always be found. An algebra that
consistently develops this dynamics is demonstrated in the next section.

4.0.1. Extended Lorentz Group Commutation Relations
The commutation relations of the Lorentz group algebra can be extended in a manner

consistent with the Dirac matrices[15, 16] as follows:

[Jj , Jk] = ih̄ εjkm Jm, [Jj , Kk] = ih̄ εjkmKm, [Kj , Kk] = −ih̄ εjkm Jm,[
Γ0 , Γk

]
= i

h̄ Kk,
[
Γ0 , Jk

]
= 0,

[
Γ0 , Kk

]
= −ih̄Γk,

[
Γj , Γk

]
= − i

h̄ εjkm Jm,
[
Γj , Jk

]
= ih̄ εjkm Γm,

[
Γj , Kk

]
= −ih̄ δjk Γ0.

(4.8)

The operators Γβ are chosen to be dimensionless, while the angular momentum Jk and boost Kj

generators have dimensions of h̄. Representations are labeled by the parameter Γ, which must
take on integer or half-integer values. Microscopic causality[3] then requires that the associated
spinor fields must satisfy boson statistics for integer values and fermi statistics for half-integer
values of Γ.

4.0.2. A closed set of extended Poincare operators The introduction of operator valued group
generators Γ̂β that extend the Lorentz group algebra require the introduction of an additional
scalar operator M̂T when space-time translations are included, in order to close the resulting
extended group algebra[3]. Any closed group of operations must satisfy the algebraic Jacobi
identities, [A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0. The non-vanishing commutators involving

the operators P̂µ and M̂T that satisfy the Jacobi identities[17] and insure group closure are
given by

[Jj , Pk] = ih̄ εjkm Pm, [Kj , P0] = −ih̄ Pj , [Kj , Pk] = −ih̄ δjk P0,

[Γµ , Pν ] = i δµνMT c, [Γµ ,MT ] = i
c η

µν Pν .
(4.9)
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An extended Poincare group Casimir operator is constructed using the Lorentz invariants

Cm ≡ M2
T c

2 − ηβνPβPν . (4.10)

The label m in the Casimir Cm is a mass that parameterizes the eigenstates used to construct
finite dimensional representations. Due to the form of the group Casimir, eigenvalues of the
hermitian operator MT will be referred to as the transverse mass of the state.

The transverse mass operatorMT introduced to close the algebra can be shown to have non-
vanishing values only for massless particles ηβνPβPν = 0. For massless particles, MT serves as
the generator for affine translations along their light-like trajectories . Non-vanishing eigenvalues
for MT provide a mechanism for dynamic mixing of massless particles of differing transverse
mass.

This formulation has direct applicability in relativistic cluster decomposable and unitary
multi-particle scattering theory consistent with correspondence to classical, non-relativistic
dynamics. However, the approach here utilized differs from that in reference [18], wherein
space-time curvature is introduced via the generalization {γµ, γν} = −ηµν1 → −gµν(x) 1 for
the Dirac matrices γµ[19]. In general, {Γµ,Γν} 6= −ηµν1 (except for the Γ = 1

2 representation
which reproduces the Dirac equation). Rather, the approach presented here introduces space-
time curvature directly through the principle of equivalence, along with the introduction of the
Minkowski metric through the commutation relations between the operators Γ̂µ, along with
Lorentz invariance of the product Γ̂µP̂µ.

5. Discussion and Conclusions
The physical universe is inherently quantum mechanical at its most fundamental level. Although
quantum physics is non-deterministic, classical behaviors emerge when measurements cluster
very near to quantum averaged values, providing validity to deterministic classical models.

Experiments demonstrate that the known gravitational effects cannot break the quantum
coherence of gravitating systems in order to establish the needed space-time dependent phase
relationships. In particular, gravitating quantum systems establish interference across regions
of space-time described using classical ideas of geometric relationships. This means that the use
of classical space-time relationships is sufficient to describe all known data, even for gravitating
quantum coherent systems. Therefore, the approach taken here is to use expectation values
of the energy-momentum tensor in Einstein’s equation to generate the consistent curvatures
of classical geometries upon which measurements take place. Covariance must connect such
geometries to any other approach (e.g. using quantized coordinates, etc.) through appropriate
correspondence, as long as Einstein’s equation remains consistent with experiment.

Locally inertial coordinates can always be found for freely gravitating systems. Generally,
one expects that the particle mass of a freely falling system is a parameter best described using
the proper reference frame dynamics of that system. The proper time of a particle of defined
mass provides a very convenient parameter for describing that dynamics, since it is the temporal
variable of most relevance to the particle itself. This has been the primary motivation for the
formulation of canonical proper gravitation as developed in this paper.

Since canonical proper gravitation embraces equivalence, it formulates quantum gravity in
a way that is consistent with the formulation of classical gravitation by Einstein. It preserves
quantum linearity, unitarity and classical correspondence. Expectation values of quantum energy
densities generate space-time curvatures consistent with general relativity. Furthermore, it
has been demonstrated that the formation of a singularity during gravitational collapse is not
inevitable, due to quantum non-locality (i.e., the non-commutivity of position and momentum,
resulting in the uncertainty principle). Since quantum non-locality is expected to continue to
be a fundamental characteristic of known physical energies, exotic geometric objects (e.g. black
holes, etc.) need not necessarily imply exotic or singular energy densities, in principle.
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