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Abstract. Because the existence of families of elements and hadrons was ultimately
understood by the realization that atoms and hadrons are composite, an obvious approach
to explaining the existence of lepton and quark families is to assume that the particles in these
families are also composite. The mass and spin spectra of leptons and quarks suggest that if
these particles are composite, they are most likely bound states of a scalar and spin-1/2 fermion
interacting via electrodynamics. However, if they are composite, the bound states must be
highly relativistic since in each family the least massive member has a small mass compared
with the others. Also, composite leptons and quarks must be extremely tightly bound since no
internal structure has ever been conclusively detected. Highly relativistic, bound-state, Bethe-
Salpeter solutions of a scalar and a spin-1/2 fermion bound by minimal electrodynamics are
discussed. These specific solutions cannot describe leptons or quarks as bound states because
the magnitude of the charges of the constituents are an order of magnitude larger than e.
The boundary conditions, however, allow solutions when the constituents have charges with
magnitudes on the order of e.

1. Introduction
Because the existence of families of elements and hadrons was ultimately understood by the
realization that atoms and hadrons are composite, although speculative, as is any physics beyond
the standard model, an obvious approach to explaining the existence of lepton and quark families
is to assume that the particles in these families are composite. The theoretical high-energy
physics community found this circumstantial evidence sufficiently compelling that in the 1970’s
many physicists devoted substantial effort to constructing a composite model. But by the early
1980’s most physicists had quit working on the idea because a mechanism was never discovered
that could tightly bind the constituents[1].

The existence of families, the circumstantial evidence that leptons and quarks are composite,
is not conclusively corroborated by direct experimental evidence. There are indications that
there might be discrepancies between the experimental value of the of the muon g-2 and the
value calculated from the standard model[2]. Even if this disagreement between experiment and
theory is confirmed, in addition to muon substructure, it could also be explained, for example, by
substructure of the W-boson or by the existence of supersymmetric partners of existing particles.

If leptons and quarks are composite, several characteristics that any composite model must
possess can be inferred from the mass and spin spectra of leptons and quarks. The masses of
these particles satisfy the inequalities melectron � mmuon � mτ , mup � mcharm � mtop and
mdown � mstrange � mbottom. Since no structure has been conclusively detected for leptons or
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quarks, any composite system must be very strongly bound. This precludes a composite model
where, for example, the electron, muon and tau are successively much more massive because
the constituents are successively much more massive. The large differences in the masses of
the particles in each family is consistent with strong binding only if the bound system is highly
relativistic. In each family the most tightly bound state must be one for which the binding
energy is almost equal to the sum of the masses of the constituents. That is, the interaction
must create a state that has almost zero energy. The development of supercomputers makes it
possible to study such highly relativistic bound states.

Although the existence of families is explained by the atomic model of atoms, the quark
model for mesons and baryons and, as discussed here, perhaps a preon model for leptons and
quarks, each of the composite models is radically different. In the atomic model, aside from small
mass defects, the mass of an atom is the sum of the masses of the constituents. For mesons
and baryons most of the mass results from the kinetic energy of the quarks so the mass of a
meson or baryon is substantially greater than the sum of the masses of the constituent quarks.
If leptons and quarks are highly relativistic bound states, the mass of each lepton or quark is
less - and for the least massive particle in each family, much less - than the sum of the masses
of the constituents.

To construct a composite model of leptons and quarks, two questions must initially be
answered: (a) What particles constituent the system? (b) What interaction binds the system?
For simplicity the bound system would likely consist of two or three constituents. If the
composite system were comprised of a spin-0 boson and a spin-1/2 fermion, all states would
have total angular momentum or spin one-half if all states have zero orbital angular momentum.
If the composite system were comprised of three or more constituents, it is difficult to imagine
a mechanism that would prevent higher-spin bound states. Thus, the lepton and quark mass
and spin spectra suggest that if the leptons and quarks are composite, they are likely relativistic
bound states of a spin-0 boson and a spin-1/2 fermion.

Leptons interact gravitationally, weakly and electromagnetically. Among the three, the
electromagnetic interaction is the only one that might be able to provide the requisite strong
binding. The similarity of the charged-lepton and quark mass spectra and the fact that the
two quark families and the charged lepton family each have three members suggests that the
same mechanism might be responsible for binding in all four families, a possible scenario when
the strong interactions can be neglected. This would be the situation if only the scalar quark
constituent interacts strongly. A heretofore unknown interaction might, of course, be responsible
for the binding, but assuming the existence of such a force would represent a more speculative
and a much more difficult approach.

2. Possible composite model of leptons and quarks
If each of the lepton and quark families is a bound state of a scalar and a spin-1/2 fermion, the
four families can be created from two constituent fermions with respective charges qf1, qf2 and
two constituent scalars with respective charges Qs1, Qs2. The four constituents can combine in
four ways to create four bound states or four families. The four charges must satisfy the four
constraints in Table 1. Note that for weak-interaction transitions between the two lepton families
or between the two quark families, with the choice of charges in Table 1, the W-boson couples
to the constituent fermions. In Table 1 there are three independent equations (constraints) and
four unknown charges so there are an infinite number of solutions.

Possible charges of the constituents with magnitudes ≤ 2 that are multiples of ±1/3 are are
given in in Table 2. For each solution the charges of both constituent fermions have the same
sign and the charges of both constituent scalars have the opposite sign. Thus only a fermion
and a scalar can form a bound state.

IARD 2014 IOP Publishing
Journal of Physics: Conference Series 615 (2015) 012006 doi:10.1088/1742-6596/615/1/012006

2



Table 1. Constraints on constituent charges.

Family Constituent Constituent Constraint
Fermion Charge Boson Charge

Electron qf1 Qs1 qf1 +Qs1 = −1
Neutrino qf2 Qs1 qf2 +Qs1 = 0
Neg. quarks qf1 Qs2 qf1 +Qs2 = −1

3
Pos. quarks qf2 Qs2 qf2 +Qs2 = 2

3

Table 2. Possible charges of constituent fermions and scalars.

Constituent Fermion Constituent Scalar
Charges Charges

qf1 qf2 Qs1 Qs2
1 2 -2 -4/3

2/3 5/3 -5/3 -1
1/3 4/3 -4/3 -2/3

-4/3 -1/3 1/3 1
-5/3 -2/3 2/3 4/3
-2 -1 1 5/3

3. Bethe-Salpeter equation
When a spin-0 field φ(x), representing a scalar with charge Qs and mass ms, interacts via
minimal electrodynamics with a spin-1/2 field Ψ(x), representing a fermion with charge qf and
mass mf , the renormalizable Lagrangian is[3]

L =: [(−ı∂µ −QsAµ)φ†][(ı∂µ −QsAµ)φ]−m2
sφ
†φ

+ Ψ̄γµ(ı∂µ − qfAµ)Ψ−mf Ψ̄Ψ− 1

4
FµνF

µν − 1

2
(∂µAµ)2 : , (1)

Figure 1. Feynman diagram for a spin-
1/2 field ψ with charge qf and a scalar
field φ with a charge Qs interacting with
the electromagnetic field Aµ.

φ φ

Qs

Aµ

qf

ψ ψ

where Fµν = ∂νAµ − ∂µAν and the final term is the
gauge-fixing term for the Feynman gauge.

The Bethe-Salpeter equation is used to calculate
the properties of the bound state. Since every
Feynman diagram contributes to the exact equation,
some approximation must be made. Usually only
the effect of the lowest-order diagram shown to the
right is included. Because of the structure of the
Bethe-Salpeter equation, contributions occur from
the diagram and iterations of the diagram, which
form a ladder with the photon propagator forming
the rungs. Thus the approximation is called the
ladder approximation.

Following standard procedures[4] and making the
ladder approximation, the Bethe-Salpeter equation
describing a bound state of a minimally interacting
scalar and spinor is[5]
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[(p0 + ξE)γ0 + piγi −mf ]{[p0 + (ξ − 1)E]2 − p2 −m2
s}χ(p)

=
iqfQs
(2π)4

∫ ∞
−∞

d4q

(p− q)2 + iε
{γ0[p0 + q0 + 2(ξ − 1)E] + γi(pi + qi)}χ(q) . (2)

The equation has been written in the center-of-mass rest frame where the four-momentum Kµ

takes the form Kµ = (E, 0, 0, 0).
In contrast, the non-relativistic, two-body, bound-state problem described by the Schrödinger

equation can be written in the form

H(x)ψ(x) = Eψ(x) , (3)

where H is the Hamiltonian of the system.
Significant differences between bound-state Bethe-Salpeter equation (2) and the bound-state

Schrödinger equation (3) are as follows: (a) Since the energy E appears multiple times in the
Bethe-Salpeter equation, there is no relativistic operator that has an eigenvalue E. That is, a
Hamiltonian does not exist for the relativistic, bound-state problem. (b) The Bethe-Salpeter
equation is covariant, implying that there is no action at a distance. If the fourth component of
the photon propagator, which is under the integral, were neglected, the interaction would become
instantaneous. The interaction would then depend on the distance r between the constituent
particles and there would be action at a distance. (c) The Bethe-Salpeter equation is an integral
equation so the boundary conditions are part of the equation itself and do not have to be specified
independently. (d) Because the energy E appears multiple times in the Bethe-Salpeter equation
and the coupling constant qfQs/(4π) appears only once, the equation is solved by specifying the
energy and solving for the coupling constant as an eigenvalue. When solving the Schrödinger
equation, the coupling constant is specified and the energy is calculated as an eigenvalue. Both
procedures yield equivalent information that allows the coupling constant to be plotted as a
function of the energy or vice versa. (e) The Bethe-Salpeter equation is always separable when
energy E = 0 because it is invariant under O(3,1) rotations. When the energy is nonzero, only
one Bethe-Salpeter equation, the Wick-Cutkosky Model[6, 7], has been separated. (f) When the
energy E = 0, there are a few analytical solutions of the Bethe-Salpeter equation, but when the
energy is nonzero, all solutions are numerical.

Zero-energy solutions, which are the zero-energy limit of finite-energy solutions, are discussed
here. Such solutions are important because the structure of the generalized matrix eigenvalue
equation that yields zero-energy solutions provides guidance[8] in constructing an appropriate
discretized equation when the energy is nonzero.

To obtain solutions to (2) in the limit E = 0, the singularity in the kernel is first removed and
the equation is transformed from Minkowski to Euclidean space by making a Wick rotation[6],
which is always possible in the ladder approximation and is sometimes possible when the effects
of higher-order Feynman diagrams are included. The Wick-rotated Bethe-Salpeter equation is

(γ̃ · p+mf )(p · p+m2
s)χ(ip0,p)

= −
qfQs
(2π)4

∫ ∞
−∞

d4q

(p− q) · (p− q)
γ̃ · (p+ q)χ(iq0,q) . (4)

In the above equation the Euclidean scalar product p · p ≡ p0p0 + p · p and γ̃ · p ≡ γ̃0p0 + γ̃ipi.
The matrices γ̃µ are given by γ̃0 ≡ −iγ0, γ̃i ≡ γi.

Dimensionless variables are introduced by defining mf ≡ m(1−∆),ms ≡ m(1+∆), p′ ≡ p/m
and q′ ≡ q/m. Writing (4) in terms of dimensionless variables and then omitting primes since
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all momenta are now dimensionless,

[γ̃ · p+ (1−∆)][p · p+ (1 + ∆)2]χ(ip0,p)

= −
qfQs
(2π)4

∫ ∞
−∞

d4q

(p− q) · (p− q)
γ̃ · (p+ q)χ(iq0,q) . (5)

Spherical coordinates are introduced as follows:

p0 = |p| cos θ1 pz = |p| sin θ1 cos θ2

px = |p| sin θ1 sin θ2 sinφ py = |p| sin θ1 sin θ2 cosφ (6)

The four-vector q is written similarly in terms of primed angles. Then

d4q = |q|3 sin2 θ′1 sin θ′2 dθ′1 dθ′2 dφ′ d|q| ≡ |q|3d|q|dΩ′(3) , (7)

and
(p− q) · (p− q) = |p|2 + |q|2 − 2|p| |q| cos Θ , (8)

where Θ is the angle between the vectors p and q.
In the zero-energy limit the angular dependence of the equation separates[9, 10] when

solutions are written as products of the functions Ψ
(±)
1 (θ1, θ2, φ) and Ψ

(±)
2 (θ1, θ2, φ) that depend

on hyperspherical harmonics in four-dimensional, Euclidean space-time and the functions
F (±)(|p|) and G(±)(|p|) that depend only on the magnitude of the Euclidean four-momentum
|p|,

χ(ip0,p) = F (±)(|p|)Ψ(±)
1 (θ1, θ2, φ) +G(±)(|p|)Ψ(±)

2 (θ1, θ2, φ) . (9)

The four-component column vectors Ψ
(±)
1 (θ1, θ2, φ) and Ψ

(±)
2 (θ1, θ2, φ), which are defined in Ref.

10, are related by

Ψ
(−)
1 (θ1, θ2, φ) = γ5Ψ

(+)
1 (θ1, θ2, φ) and Ψ

(−)
2 (θ1, θ2, φ) = γ5Ψ

(+)
2 (θ1, θ2, φ) , (10)

and satisfy the relationships

γ̃ · pΨ
(±)
1 (θ1, θ2, φ) = ∓|p|Ψ(±)

2 (θ1, θ2, φ) and γ̃ · pΨ
(±)
2 (θ1, θ2, φ) = ±|p|Ψ(±)

1 (θ1, θ2, φ) . (11)

After substituting χ(ip0,p) as given in (9) with upper superscripts into the Bethe-Salpeter
equation (5), the equation can be simplified using (11), and the angular integrations on the right-
hand side can be performed using Hecke’s theorem[11]. (All formulas necessary for carrying out

the angular integration are given in the appendix of Ref. 10.) The coefficients of Ψ
(+)
1 (θ1, θ2, φ)

and Ψ
(+)
2 (θ1, θ2, φ) must vanish independently, yielding the following two separated, coupled

equations that depend on the single variable |p|:

[
|p|2 + (1 + ∆)2

] [
(1−∆)F (+)(|p|) + |p|G(+)(|p|)

]
= −

qfQs
(2π)4

|p|
∫ ∞

0
d|q| |q|3Λ

(2)
k1+1/2(|p|, |q|)G(+)(|q|)

−
qfQs
(2π)4

∫ ∞
0

d|q| |q|4Λ
(2)
k1−1/2(|p|, |q|)G(+)(|q|) (12a)

IARD 2014 IOP Publishing
Journal of Physics: Conference Series 615 (2015) 012006 doi:10.1088/1742-6596/615/1/012006

5



[
|p|2 + (1 + ∆)2

] [
−|p|F (+)(|p|) + (1−∆)G(+)(|p|)

]
=
qfQs
(2π)4

|p|
∫ ∞

0
d|q| |q|3Λ

(2)
k1−1/2(|p|, |q|)F (+)(|q|)

+
qfQs
(2π)4

∫ ∞
0

d|q| |q|4Λ
(2)
k1+1/2(|p|, |q|)F (+)(|q|) (12b)

In the above equation

Λ(2)
n (|p|, |q|) =

2π2

|p||q|
R(|p|, |q|)n+1

n+ 1
, (13)

where

R(|p|, |q|) =


|q|
|p| if |q| ≤ |p| ,

|p|
|q| if |q| ≥ |p| .

(14)

The index k1 = 1/2, 3/2, . . . , and the angular momentum j of the bound state satisfies j ≤ k1.
When χ(ip0,p) with lower superscripts in (9) is substituted into the Bethe-Salpeter equation

(5), the two equations that are obtained are identical to (12) after making the substitutions
F (−)(|p|)→ F (+)(|p|) and G(−)(|p|)→ −G(+)(|p|). Since no additional eigenvalues are obtained
by considering this second set of equations, attention is restricted to (12), and the superscripts
(+) are dropped for F (+)(|p|) and G(+)(|p|).

4. Analytical Boundary Conditions
The boundary conditions satisfied by the solutions as |p| approaches zero and infinity must be
determined before solutions can be calculated numerically. That is, the convergence parameters
f0, g0, f∞ and g∞ must be determined that, respectively, satisfy the equations

F (|p|)−→
|p|→0

F0|p|f0 , G(|p|)−→
|p|→0

G0|p|g0 , (15)

F (|p|) −→
|p|→∞

F∞|p|−f∞ , G(|p|) −→
|p|→∞

G∞|p|−g∞ , (16)

where F0, G0, F∞ and G∞ are constants. The solutions for f0 and g0 were determined in Ref.
5 and are given by

f0 = k1 −
1

2
, g0 ≥ k1 +

1

2
. (17)

At large momenta the Bethe-Salpeter equation can be solved analytically. Each solution yields
(a) an equation for the convergence parameters f∞ or g∞ in terms of the coupling constant and
(b) an algebraic equation that expresses one of the convergence parameters in terms of the other.
But the analytical solutions at large momenta only determine allowed ranges for the values of the
convergence parameters, not the specific values for which there are solutions (at all momenta).

Among the five possible classes of solutions found in Ref. 5, solutions were found only for
“Boundary Solutions I” where f∞ and g∞ satisfy the following conditions:

f∞ = −k1 +
5

2
+ εf , 0 < εf < 2 k1 + 1 , (18a)

g∞ = −k1 +
7

2
+ εg , 0 < εg < 2 k1 + 1 , (18b)

εg ≤ εf ≤ εg + 2 . (18c)
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The four integrals in (12) can be evaluated analytically at large momentum |p|[12]. In this
limit (12a) and (12b) can then be written, respectively, as

(1−∆)F∞ |p|k1−
1
2
−εf +G∞ |p|k1−

1
2
−εg

=
|p|>>1

−
qfQs
4π

1

π

[
2(1 + εg)G∞

εg(2k1 + 1− εg)(2 + εg)
|p|k1−

1
2
−εg

+
1

2

(
cg1

k1 + 3
2

+
cg2

k1 + 1
2

)
|p|−k1−

3
2

]
, (19a)

− F∞ |p|k1+ 1
2
−εf + (1−∆)G∞|p|k1−

3
2
−εg)

=
|p|>>1

qfQs
4π

1

π

[
2(2k1 + 2− εf )F∞

εf (2k1 + 1− εf )(2k1 + 3− εf )
|p|k1+ 1

2
−εf +

cf1

2(k1 + 1
2)
|p|−k1−

1
2

]
, (19b)

where cg1, cg2 and cf1 are constants.
From (18c) there are four possible relationships between εf and εg: either εg < εf or εg = εf

and either εf < εg+2 or εf = εg+2. In this talk attention is restricted to the case where boundary
conditions allow coupling constants with magnitudes on the order of the fine structure constant
α only when the bound states have spin-1/2:

εf > εg , εf < εg + 2 . (20)

At very large momenta (19a) simplifies by noting that (20) implies |p|k1−
1
2
−εf � |p|k1−

1
2
−εg

and (18b) implies |p|−k1−
3
2 � |p|k1−

1
2
−εg . Thus the terms proportional to |p|k1−

1
2
−εf and |p|−k1−

3
2

can be neglected yielding

G∞|p|k1−
1
2
−εg = −

qfQs
4π

1

π

[
2(1 + εg)

εg(2k1 + 1− εg)(2 + εg)

]
G∞|p|k1−

1
2
−εg , (21)

or
qfQs
4π

= −πεg(2k1 + 1− εg)(2 + εg)

2(1 + εg)
. (22)

Similarly at very large momenta (19b) simplifies: from (20) and (18a) it follows, respectively,

that |p|k1−
3
2
−εg � p|k1+ 1

2
−εf and |p|−k1−

1
2 � p|k1+ 1

2
−εf . Thus

−F∞|p|k1+ 1
2
−εf =

qfQs
4π

1

π

[
2(2k1 + 2− εf )

εf (2k1 + 1− εf )(2k1 + 3− εf )

]
F∞|p|k1+ 1

2
−εf (23)

or
qfQs
4π

= −π
εf (2k1 + 1− εf )(2k1 + 3− εf )

2(2k1 + 2− εf )
. (24)

Equating (22) and (24) yields the following relationship between εf and εg:

εg(2k1 + 1− εg)(2 + εg)

(1 + εg)
=
εf (2k1 + 1− εf )(2k1 + 3− εf )

(2k1 + 2− εf )
(25)

If εf is specified, then (25) becomes a cubic equation for εg that is easily solved when written in
the factored form

0 = (εg + εf − 2k1 − 1)[ε2g(−εf + 2k1 + 2) + εg(εf − 2)(εf − 2k1 − 2) + εf (εf − 2k1 − 3)] (26)
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The solutions are

εg = 2k1 + 1− εf , (27a)

εg =
1

2

εf − 2±

√
8(k1 + 1) + 2(k1 + 1)ε2f − ε3f

2(k1 + 1)− εf

 . (27b)

Expressing εg in terms of εf greatly simplifies the numerical search for solutions: instead of
independently searching for solutions with values of εf and εg in their allowed ranges (18), it is
only necessary to search for solutions with values of εf in its allowed region 0 < εf < 2k1 + 1.

The constituents in a composite model of leptons and quarks would likely have charges with
magnitudes on the order of e, or coupling constants with magnitudes on the order of the fine
structure constant α = e2/(4π) ' 1/137. From (22) and (24), respectively, the magnitude of
the coupling constant is small when either εg or 2k1 + 1 − εg is small and when either εf or
2k1 + 1− εf is small. Solutions are normalizable only if they decrease faster than |p|−3 at large
momenta[5]. When εg is small, from (18b) solutions are normalizable only when k1 = 1/2,
implying that all possible solutions have spin-1/2. When εf is small, from (18a), the solution is
not normalizable. Thus there are two cases where the boundary conditions allow normalizable
solutions with small coupling constants: (a) When εg and 2k1+1−εf are small, (27a) is satisfied.
Boundary conditions exist that are compatible with small coupling constants, and any solutions
have spin-1/2. When 2k1 + 1 − εg and 2k1 + 1 − εf are small, (27b) is satisfied. Boundary
conditions allow higher-spin solutions.

5. Numerical procedure for solving the bound-state Bethe-Salpeter equation
Although solving the two-body, bound-state Schrödinger equation numerically is significantly
easier than solving the two-body, bound-state Bethe-Salpeter equation, the general method for
solving both is the same. The two-body, bound-state Schrödinger equation (3) can be solved in
two steps:
Step # 1: The solution ψ(x) is expanded in terms of a finite set of basis functions {bj(x)},

ψ(x) =
N∑
j=1

cjbj(x) . (28)

Using only a finite number of basis functions in the above expansion is a necessary approximation
when carrying out a numerical calculation. By increasing the number of basis functions, the
approximation is improved so that increasingly accurate solutions are obtained. Substituting
the expansion for ψ(x) into the Schrödinger equation (3),

N∑
j=1

H(x)bj(x)cj = E

N∑
j=1

bj(x)cj . (29)

Step # 2: The eigenvalue equation is discretized and solved numerically by converting it
into a generalized matrix eigenvalue equation using the Rayleigh-Ritz-Galerkin variational

method[13, 14]: Multiplying both sides of the above equation by b†i (x) and integrating over
x,

N∑
j=1

∫ ∞
−∞

d3x b†i (x)H(x)bj(x)cj = E
N∑
j=1

∫ ∞
−∞

d3x b†i (x)bj(x)cj . (30)
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In (30) the Schrödinger equation has been rewritten as a N ×N generalized matrix eigenvalue
equation of the form

Ac = E Bc, (31)

where the matrices A and B are given, respectively, by

Ai j =

∫ ∞
−∞

d3x b†i (x)H(x)bj(x) , Bi j =

∫ ∞
−∞

d3x b†i (x)bj(x) . (32)

All eigenvalues of a generalized matrix eigenvalue equation of the form (31) are real if A and B
are Hermitian and if A, B or both are positive definite.

Although numerical solutions are obtained by discretizing the Schrödinger equation, the
solutions of the discretized Schrödinger equation can be used to construct solutions to the
Schrödinger equation itself. The eigenvalues E of the discretized equation are also the eigenvalues
of the Schrödinger equation. Furthermore, the eigenvector c = (c1, c2, . . . ) of the discretized
equation (31) is the set of expansion coefficients for the solution ψ(x) in (28) of the Schrödinger
equation (3).

The Bethe-Salpeter equation is solved similarly to the separated Schrödinger equation with
three complicating factors:
(a) As can be seen from the Bethe-Salpeter equation (2), the kernel of the equation - and thus
the solutions - are singular as a result of propagators in Minkowski space. The singularities are
eliminated by rewriting the equation in Euclidean space[6].
(b) It is possible to discretize the Bethe-Salpeter equation and obtain a generalized matrix
eigenvalue equation of the form

Discretized Bethe-Salpeter Equation: Ac =
qfQs
4π

B . (33)

Because a relativistic Hamiltonian does not exist, it is not usually possible to discretize the
equation so that all eigenvalues are real. That is, it is not possible to create a generalized matrix
eigenvalue equation of the form (33) where the matrices A and B are Hermitian and at least
one is positive definite. However, solutions with real eigenvalues are obtained when the basis
functions obey the boundary conditions.
(c) For the bound-state Bethe-Salpeter equation (2) that might describe leptons and quarks as
bound states, the coupling constant determines the behavior of the solution at large momenta,
which are boundary conditions. The boundary conditions at large momenta can be obtained
analytically because the Bethe-Salpeter equation can be solved analytically in this limit. The
discretized Bethe-Salpeter equation is non-linear in the coupling constant since the coupling
constant appears both in the Bethe-Salpeter equation as the eigenvalue and in the basis
functions.

Only spin-1/2 solutions are calculated. Since the angular momentum j satisfies j ≤ k1, the
index k1 = 1/2. Spin-1/2 solutions are somewhat less difficult to calculate than higher-spin
solutions and are the most interesting since, if leptons and quarks are composite, they would be
spin-1/2 bound states.

The zero-energy solutions F (|p|) and G(|p|) in (12) are expanded in terms of basis functions
as follows:

F (|p|) =
|p|f0

(|p|+ 1)f0+2+εf

N∑
j=1

fjBj , (34a)

G(|p|) =
|p|g0

(|p|+ 1)g0+3+εg

N∑
j=1

gjBj . (34b)
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In (34) f0 and g0 are given in (17), and from (18) f∞ = 2 + εf and g∞ = 3 + εg. Thus the
factor preceding each summation symbol obeys the boundary conditions that F (|p|) or G(|p|),
respectively, obey. The Bj are given by

Bj =

 cubic spline for j = 1, . . . , N − 4 ,

boundary spline for j = N − 3 . . . N .
(35)

Cubic splines[15] are cubic polynomials that, along with their first two derivatives, are
continuous. Cubic splines, one of which is depicted in Fig. 2(a), are nonzero on four contiguous
intervals labeled #1, #2, #3 and #4.

At large momenta solutions are expanded in terms of boundary splines. Boundary splines and
their first two derivatives are everywhere continuous. In addition, as the momentum approaches
infinity, the boundary splines become constants. As a consequence all basis functions, and,
therefore, all solutions obey the boundary conditions at large momenta. An example of each of
the four types of boundary splines is depicted in Fig. 2(b).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.2

0.4

0.6

0.8

1.0

#1 #2 #3 #4 #1 #2 #3 #4

|P | |P | ∞
(a) Cubic Spline (b) Boundary Splines

Figure 2.

Because the discretized, Bethe-Salpeter equation is non-linear in the coupling constant, it
is solved by systematically sweeping through the allowed values of εf in the range specified by
(18a). The value of εg is then calculated from (27), and the input value of the coupling constant
qfQs/(4π)input is calculated from either (22) or (24). The coupling constant qfQs/(4π)ouput

is calculated as an eigenvalue of the discretized Bethe-Salpeter equation. When the quantity
[qfQs/(4π)input−qfQs/(4π)ouput] changes sign, a value of the coupling constant that is a solution
to the Bethe-Salpeter equation lies between the two input values of the coupling constant that
yield different signs for [qfQs/(4π)input − qfQs/(4π)ouput].

6. Numerical solutions of the bound-state Bethe-Salpeter equation
The only solutions found satisfy (27a), namely, εf + εg = 2.00. In Fig. 3 the coupling constant
qfQs/(4π) is plotted as a function of the dimensionless mass parameter ∆.

It is possible to understand why the coupling constant qfQs/(4π) plotted in Fig. 3 is weakly
dependent on ∆. As discussed in §4, the behavior of the solutions at large |p| determines the
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4π
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Figure 3. The coupling constant qfQs/(4π) as a function of the dimensionless mass parameter
∆ when j = 1/2 and E = 0.

coupling constant. At large |p| (12a) and (12b) become, respectively,

|p|3G(|p|) =
|p|>>1

−
qfQs
(2π)4

∫ ∞
0
|q|3

[
|p|Λ(2)

k1+1/2(|p|, |q|)

+|q|Λ(2)
k1−1/2(|p|, |q|)

]
G(|q|)d|q| , (36a)

|p|3 F (|p|) =
|p|>>1

−
qfQs
(2π)4

∫ ∞
0
|q|3

[
|p|Λ(2)

k1−1/2(|p|, |q|)

+|q|Λ(2)
k1+1/2(|p|, |q|)

]
F (|q|)d|q| . (36b)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

1

2

3

4

5

F (|p|)

G(|p|)

|p|
Figure 4. The components F (|p|) and G|p|) of
a solution as a function of |p| for mf/ms = 1/9,
εf = 1.52, εg = 0.483 and qfQs/(4π) = −1.93.

As can be seen from (36), at large |p| the
Bethe-Salpeter equation does not depend
explicitly on ∆. But because ∆ occurs in
(11), when |p| is small F (|p|) and G(|p|)
depend significantly on ∆. For large |p|,
F (|p|) and G(|p|) depend only implicitly on
∆ through integrals over F (|p|) and G(|p|).
That dependence is sufficiently small that
the coupling constant depends weakly on
∆.

In Fig. 4 the components F (|p|) and
G(|p|) of the solution are plotted as a
function of |p| when the mass parameter
∆ = 0.8, implying mf/ms = 1/9. A
solution is found for εf = 1.52, which
implies that εg = 0.483 and qfQs/(4π) =
−1.93. When mf/ms is substantially less
than 1, as can be seen from Fig. 4, F (|p|),
which is the pure angular momentum ` = 0 component, and G(|p|), which is a mixed angular
momentum ` = 0 and ` = 1 component, are roughly comparable in magnitude.

As the mass ratio mf/ms increases, however, the magnitude of the pure ` = 0 component
F (|p|) becomes much larger than the magnitude of the mixed ` = 0 and ` = 1 component
G(|p|). In Fig. 5(a) the component G(|p|) of a solution is plotted as a function of |p| when
the mass parameter ∆ = −0.8 or mf/ms = 9 and εf = 1.57, implying that εg = 0.429 and
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Figure 5. (a) The component G|p|) and (b) the components F (|p|) and G|p|) of the same
solution as a function of |p| for mf/ms = 9, εf = 1.57, εg = 0.429 and qfQs/(4π) = −1.80.

qfQs/(4π) = −1.80. To provide a visual comparison of F (|p|) and G(|p|), both are plotted as a
function of |p| in Fig. 5(b). The magnitude of G(|p|) is so much smaller than the magnitude of
F (|p|) that the dashed line depicting G(|p|) is barely visible. If two spin-1/2, bound states are
both pure ` = 0 states, the first-order, electromagnetic decay of one into the other is forbidden
by conservation of angular momentum. Thus if two states have large values of mf/ms, the
first-order electromagnetic decay of one into the other is strongly suppressed.

7. Checking numerical solutions
Solutions calculated from the generalized matrix eigenvalue equation (33) are checked in the
following ways: (a) As the number of basis functions is increased, the value of each eigenvalue
must converge. (b) For each solution the left- and right-hand sides of the Bethe-Salpeter equation
are compared in the physical region on a set of points spanning the space. The values of the left-
and right-hand sides of the equation are written at the points where the absolute errors between
the two sides of the equation are greatest. For solutions with |∆| ≤ 0.8 the greatest percent
difference between points with the largest absolute difference between the left- and right-hand
sides of the equation is less than 0.08%. For 0.8 < |∆| < 0.95, the percent difference increases
substantially and is always only less than 4.6% although the left-and right-hand sides agree much
more closely at almost all points. (c) The left-and right-hand sides of the equation must very
nearly agree at the largest values of momenta. At the largest value of dimensionless momentum
sampled, |p| = 1.50 × 108, the maximum percent difference between the left- and right-hand
sides of (12) is 3 × 10−3% for −0.99 ≤ ∆ ≤ 0.99. (d) A reliability coefficient rlhs−rhs[16],
which is a statistical measure of how closely the left- and right-hand sides of (12) agree at the
sampled points, is calculated. If the left- and right-hand sides agree exactly at every point, then
rlhs−rhs = 1. Except when ∆ = −0.99 calculations are refined until the reliability coefficient
for each solution equals 1 to ten significant figures. (e) A second reliability coefficient rfinal

lhs−rhs
is calculated for the final Nlarge points that are sampled at large momenta. Calculations are
always refined until the reliability coefficient for each solution equals 1 to ten significant figures.

8. Conclusions and future research
Strongly bound states with coupling constants with magnitudes on the order of the
electromagnetic fine structure constant α are allowed by the boundary conditions and may
exist. In the ladder approximation as the magnitude of coupling constant is decreased from 1.00
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to the fine structure constant α, the input and output values of the coupling constant always
have the same sign, implying that there are no solutions. However, when the magnitude of the
input value of the coupling constant is α, the input and output values of the coupling constant
differ by 4 × 10−3%, The additional attractive force created by the seagull and crossed fourth-
order diagrams may be sufficient to create strongly bound states with a coupling constant on
the order of −α. The author is currently calculating these effects. For the class of solutions
discussed here, all such strongly bound states would have spin-1/2 as do the leptons and quarks.
Finally, a mechanism exists to suppress the decay µ→ e+ γ.
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