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Abstract. Even though Faraday’s Law is a dynamical law that describes how changing E
and B fields influence each other, by introducing a vector potential Aµ according to Fµν =
∂µAν−∂νAµ Faraday’s Law is satisfied kinematically, with the relation (−g)−1/2εµνστ∇νFστ = 0
holding on every path in a variational procedure or path integral. In a space with torsion Qαβγ
the axial vector Sµ = (−g)1/2εµαβγQαβγ serves as a chiral analog of Aµ, and via variation with
respect to Sµ one can derive Faraday’s Law dynamically as a stationarity condition. With Sµ
serving as an axial potential one is able to introduce magnetic monopoles without Sµ needing to
be singular or have a non-trivial topology. Our analysis permits torsion and magnetic monopoles
to be intrinsically Grassmann, which could explain why they have never been detected. Our
procedure permits us to both construct a Weyl geometry in which Aµ is metricated and then
convert it into a standard Riemannian geometry.

1. Introduction
The Maxwell equations of electromagnetism in flat space break up into two groups, the Maxwell-
Ampere and Electric Gauss Laws

∇×B − ∂E

∂t
= Je, ∇ ·E = ρe, (1)

and the Faraday and Magnetic Gauss Laws

∇×E +
∂B

∂t
= 0, ∇ ·B = 0. (2)

Since can one derive second-order wave equations for the propagation of the E and B field
strengths in a source-free region only when all of the above equations are taken in conjunction,
as such all of these equations should be regarded as being on an equal dynamical footing. And
if they are to be on an equal dynamical footing, then each one of these equations should, like
all dynamical equations, be derivable via stationary variation of an action.

However, the standard treatment of electrodynamics is not formulated in this way, as it does
not in fact derive all of these equations from a variational procedure. Rather, in order to develop
the variational procedure that it does use, it relies on the fact that the Faraday-Magnetic Gauss
equations immediately admit of an exact solution

E = −∂A
∂t
−∇φ, B = ∇×A, (3)
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a solution that is unique up to gauge transformations of the form A→ A+∇χ, φ→ φ−∂χ/∂t.
The introduction of A and φ serves two purposes. When inserted into Eq. (1) they enable one
to solve for the E and B fields once Je and ρe are specified. And in addition they allow one to
develop a variational procedure.

To discus the variational procedure it is more convenient to first write the Maxwell equations
covariantly in a curved space where they generalize to

∇νF νµ = Jµ, (4)

(−g)−1/2εµνστ∇νFστ = 0. (5)

In Eq. (5) the antisymmetric rank two tensor Fµν is the field strength with components

F 01 = −Ex, F 12 = −Bz etc., and Jµ = (ρe,Je). Using −(−g)−1εµνστ ε
µαβγ = δαν δ

β
σδ

γ
τ +δατ δ

β
ν δ

γ
σ +

δασ δ
β
τ δ

γ
ν − δαν δ

β
τ δ

γ
σ − δασ δ

β
ν δ

γ
τ − δατ δ

β
σδ

γ
ν , Eq. (5) can also be written in the form

∇νFστ +∇τFνσ +∇σFτν = 0. (6)

For brevity we shall refer to Eq. (5) as Faraday’s Law even as it encompass Gauss’ Law of
Magnetism as well. With Eq. (5) possessing an exact solution of the form Fµν = ∇µAν−∇νAµ,
one introduces the Maxwell action

IMAX =

∫
d4x(−g)1/2

[
− 1

4
FµνF

µν −AµJµ
]
, (7)

with its stationary variation with respect to Aµ immediately leading to Eq. (4).
Since this variation is a variation in which Eq. (5) is not varied, Eq. (5) is required to hold on

every variational path. Thus even though Faraday’s Law is a dynamical equation, the variation
that is done is a constrained one in which Faraday’s Law is imposed on every variational path,
even on those that are not stationary, with the quantum path integral

∫
DAµ exp(iIMAX) then

being constrained this way as well. We shall thus seek to construct a variational procedure in
which Faraday’s Law is to only hold at the stationary minimum.

2. Setting up the Variational Procedure
If we do not want Faraday’s Law to hold on non-stationary paths, we cannot set Fµν =

∇µAν−∇νAµ, since this would immediately cause (−g)−1/2εµνστ∇νFστ to vanish [1]. If however,
we wish to recover Faraday’s Law at the stationary minimum, then with 8 equations being
embodied in Eqs. (4) and (5), we need not one but two 4-vector potentials, one of course being
the standard vector potential Aµ and the other needing to be some as yet to be identified axial
vector Sµ. Moreover, without regard to variational issues, we note that in the event of magnetic
monopoles one would ordinarily (though not quite in fact as we show below) modify Eq. (5) to

(−g)−1/2εµνστ∇νFστ = Kµ, (8)

with there then being both vector and axial vector current sources, for a total of 8 components.
In the same way as we couple Aµ to Jµ via AµJ

µ we should equally anticipate a coupling SµK
µ

in the axial current sector, a coupling that is parity conserving if Sµ is an axial vector. The
issue of constructing a variational principle for Faraday’s Law is thus related to the coupling of
electromagnetism to magnetic currents, and our objective will be to set up a variational principle
with respect to Aµ and Sµ that would recover Eqs. (4) and (8) at the stationary minimum, with
Eq. (5) then following in the limit in which we could set the monopole current to zero.
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Recalling the two-potential study [2, 3] of the monopole problem [4], it is very convenient to
introduce

Xµν = ∇µAν −∇νAµ − 1

2
(−g)−1/2εµνστ (∇σSτ −∇τSσ) (9)

as a generalized Fµν . On setting Sµν = ∇µSν −∇νSµ, we can rewrite Xµν in terms of Fµν and
the dual Ŝµν = (1/2)(−g)−1/2εµνστSστ of Sµν according to:

Xµν = Fµν − Ŝµν , X̂µν = F̂µν + Sµν . (10)

(If ε0123 = +1, ε0123 = −1.) Given this Xµν , Eqs. (4) and (8) are to be replaced by

∇νXνµ = ∇νF νµ = Jµ, ∇νX̂νµ = ∇νSνµ = Kµ,

∇νF̂ νµ = 0, ∇ν Ŝνµ = 0, (11)

with it now being ∇νX̂νµ = Kµ and not in fact ∇νF̂ νµ = Kµ that is to describe the monopole.
If we introduce a second set of field strengths S01 = −B′x, S12 = +E′z, Ŝ

01 = E′x, Ŝ12 = B′z
etc., on setting Kµ = (ρm,−Jm), we find that in flat space Eq. (11) breaks up into two sectors,
namely Eqs. (1) and (2) and the analog

∇×B′ − ∂E′

∂t
= 0, ∇ ·E′ = 0,

∇×E′ +
∂B′

∂t
= Jm, ∇ ·B′ = ρm. (12)

Moreover, if we define ETOT = E+E′, BTOT = B+B′, we can combine Eqs. (1), (2), and (12)
into

∇×BTOT −
∂ETOT

∂t
= Je, ∇ ·ETOT = ρe,

∇×ETOT +
∂BTOT

∂t
= Jm, ∇ ·BTOT = ρm. (13)

Thus even if Jm and ρm can be neglected, it is ETOT and BTOT that are measured in
electromagnetic experiments.

On introducing the action

I =

∫
d4x(−g)1/2

[
− 1

4
XµνX

µν −AµJµ − SµKµ

]
, (14)

we find that stationary variation with respect to Aµ and Sµ then immediately leads to Eq.
(11), just as we want. Moreover, up to surface terms this action decomposes into two sectors
according to

I =

∫
d4x(−g)1/2

[
− 1

4
FµνF

µν −AµJµ −
1

4
SµνS

µν − SµKµ

]
. (15)

Thus with the introduction of a magnetic current sector we can formulate a variational principle
for Faraday’s Law and for theories that involve magnetic monopoles, and can do so without
the use of singular potentials or non-trivial topologies [5]. However, we still need to ascribe a
physical meaning to Sµ, and to this end we turn to torsion. This will lead us directly to the
action given in Eq. (15), and suggest a rationale for why the Sµν sector has escaped detection
and why a purely Aµ-based quantum electrodynamics works as well as it does.
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3. Torsion
To construct covariant derivatives in a metric theory one introduces a connection Γλµν . For a
torsionless Riemann space one uses the Levi-Civita and spin connections

Λλµν =
1

2
gλα(∂µgνα + ∂νgµα − ∂αgνµ) = Λλνµ,

−ωabµ = V b
ν ∂µV

aν + V b
λΛλνµV

aν = ωbaµ , (16)

to construct covariant derivatives such as ∇µgλν = ∂µg
λν + Λλαµg

αν + Λναµg
λα and DµV

aλ =

∂µV
aλ + ΛλνµV

aν + ωabµ V
λ
b that transform as tensors under local translations and local Lorentz

transformations. In Eq. (16) we have introduced vierbeins V a
µ that carry an index a

associated with a fixed special-relativistic reference system, with the metric being writable as
gµν = ηabV

a
µ V

b
ν . The covariant derivatives of gµν and V µa constructed with Λλµν obey the

metricity conditions ∇µgλν = 0, DµV
aλ = 0. If one generalizes Λλµν to Γ̃λµν by adding a rank-3

tensor to it, covariant derivatives constructed with Γ̃λµν will still transform as true tensors.

However, they may not necessarily obey metricity conditions ∇̃µgλν = 0, D̃µV
aλ = 0 with

respect to Γ̃λµν .
To extend the geometry to include torsion one takes the connection to no longer be symmetric

on its two lower indices, and defines the Cartan torsion tensor Qλµν

Qλµν = Γλµν − Γλνµ. (17)

To implement metricity one defines a contorsion tensor

Kλ
µν =

1

2
gλα(Qµνα +Qνµα −Qανµ), (18)

and with Kλ
µν one constructs connections of the form

Γ̃λµν = Λλµν +Kλ
µν ,

−ω̃abµ = −ωabµ + V b
λK

λ
νµV

aν = ω̃baµ . (19)

To couple spinors to gravity in a Riemannian space without torsion one uses the covariantized
Dirac action ID = (1/2)

∫
d4x(−g)1/2iψ̄γaV µ

a (∂µ + Σbcω
bc
µ )ψ + H.c., where Σab = (1/8)(γaγb −

γbγa). To generalize this action to include torsion one replaces ωbcµ by ω̃bcµ and obtains

ĨD =
1

2

∫
d4x(−g)1/2iψ̄γaV µ

a (∂µ + Σbcω̃
bc
µ )ψ +H.c. (20)

Integration parts, use of properties of the Dirac gamma matrices, and introduction of a coupling
to Aµ yields [6]

ĨD =

∫
d4x(−g)1/2iψ̄γaV µ

a (∂µ + Σbcω
bc
µ − iAµ − iγ5Sµ)ψ, (21)

where

Sµ =
1

8
(−g)−1/2εµαβγQαβγ ,

−(−g)−1/2εµαβγS
µ =

1

4
[Qαβγ +Qγαβ +Qβγα]. (22)
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In the action ĨD we note that even though the torsion is only antisymmetric on two of its indices,
the only components of the torsion that appear in its torsion-dependent Sµ term are the four
that constitute that part of the torsion that is antisymmetric on all three of its indices. As
well as being locally gauge invariant under ψ → eiα(x)ψ, Aµ → Aµ + ∂µα(x), ĨD is also locally

chiral invariant [6] under ψ → eiγ
5β(x)ψ, Sµ → Sµ + ∂µβ(x). Additionally, as noted in [7], ĨD

is locally conformal invariant under V a
µ (x)→ Ω(x)V a

µ (x), ψ(x)→ Ω−3/2(x)ψ(x) since, just like
the vector potential Aµ, the equally minimally coupled Sµ also has zero conformal weight [8].

The ĨD action thus has a remarkably rich local invariance structure, as it is invariant under
local translations, local Lorentz transformations, local gauge transformations, local axial gauge
transformations, and local conformal transformations.

With Sµ having a structure identical to the Faraday Law structure given in Eqs. (5) and
(6), and with Sµ precisely being an axial 4-vector, Sµ is thus the natural quantity to act as the
second potential that appears in Xµν [9], and thus the natural axial vector needed to set up a
variational procedure for Faraday’s Law of electromagnetism [10]. However, in order to set up a
variational procedure we will need to construct a kinetic energy term for it. To generate such a
kinetic energy term we appeal to the Dirac action. Specifically, we recall [11], [6] that when one
does a path integration

∫
Dψ̄Dψ exp(iĨD) over the fermions (equivalent to a one fermion loop

Feynman graph) one generates an effective action of the form [12]

IEFF =

∫
d4x(−g)1/2C

[
1

20

[
RµνR

µν − 1

3
(Rαα)2

]
+

1

3
FµνF

µν +
1

3
SµνS

µν

]
, (23)

where C is a log divergent constant and Rµν is the standard (torsionless) Ricci tensor. The

action IEFF possesses all the local symmetries possessed by ĨD, with the appearance of the
RµνR

µν − (1/3)(Rαα)2 term being characteristic of a gravity theory that is locally conformal
invariant (see e.g. [13, 14]). Also, we take note of the fact that path integration over the fermions
has converted terms that are linear in Aµ and Sµ in ĨD into terms that are quadratic in Aµ and
Sµ in IEFF. Comparing now with Eq. (15), we see that the action IEFF contains precisely
the kinetic energy term we seek. Thus not only does torsion provide a natural origin for the
second potential needed for Xµν , up to renormalization constants it also provides precisely the
correct action whose variation, on adding appropriately coupled sources, leads to Eq. (11) and
a derivation of Faraday’s Law via a variational principle. Sµ thus serves as an analog of the
electromagnetic Aµ, an analog that is purely geometrical.

Given the geometrical structure of Sµ, we note that it is also possible to give Aµ an analogous
such structure. Specifically, we recall that Weyl had suggested that one could metricate
electromagnetism by introducing a Bµ-dependent connection for a real field Bµ of the form

W λ
µν = −2

3
(gλνBµ + gλµBν − gµνBλ) = W λ

νµ, (24)

as written here with a convenient 2/3 charge normalization. However, if we now use
Λλµν + Kλ

µν + W λ
µν in the spin connection, as noted in [15] the Bµ term drops out of the

Dirac action identically, with Weyl’s Bµ not coupling to the Dirac spinor at all. The reason
for this is that the Weyl connection generates individual non-Hermitian terms of the generic
form i(∂µ + Bµ)ψ, and in the full Hermitian ĨD such terms must cancel identically. However,
given this, suppose we instead take Bµ to be anti-Hermitian and set Bµ = iAµ where Aµ is
Hermitian. Now, not only is there now no cancellation, use of this anti-Hermitian connection is
found to precisely lead to none other than the above ĨD as given in Eq. (21). Thus starting from
the torsionless ID we can derive Eq. (21) in two distinct ways. If we demand local invariance

of the action under ψ → eiα(x)ψ and ψ → eiγ
5β(x)ψ, we can introduce Aµ and Sµ by minimal

coupling or by changing the geometry. The two potentials needed for electromagnetism can thus
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be put on a completely equal footing. Now a drawback in using a Bµ-dependent W λ
µν is that

with it parallel transport is path dependent, with the geometry being a Weyl geometry rather
than a Riemannian one. However, with iAµ the geometry associated with IEFF is a regular
Riemannian one that uses only the connections given in Eq. (16). Thus by using iAµ instead of
Bµ we convert a Weyl geometry into a Riemannian one.

4. The Nature of Torsion
While we have seen that the axial 4-vector Sµ gives electromagnetism a chiral structure, we
need to comment on the fact that experimentally there is no apparent sign of Sµ. Moreover,
since Sµ is associated with torsion it is not simply a typical spacetime axial vector field. To
underscore the special nature of torsion, we note that even if the standard (torsionless) Riemann
tensor is zero, torsion is not obliged to vanish. Torsion could thus exist in a spacetime with no
Riemann curvature at all. In a space that is flat as far as the geometry of its four spacetime
xµ coordinates is concerned, we note that since the Minkowski metric is independent of the xµ,
a non-zero torsion might not depend on the xµ coordinates either. Given the antisymmetry of
Qλµν , we can thus envisage that Sµ, and thus concomitantly its monopole source Kµ as well,
might depend instead on a set of Grassmann coordinates, coordinates that anticommute with
each other.

To realize this possibility, on comparing Eqs. (5) and (6) with Eq. (22), we can consider
the possibility that the torsion can written as Qλµν = ∇λAµν , where Aµν is an antisymmetric
rank two tensor. In [10] it was suggested that this Aµν could be the antisymmetric part of a
16-component metric tensor. To this end, we now note that if we introduce a set of Grassmann
vierbeins ξaµ, then the quantity Aµν = ηabξ

a
µξ
b
ν will be antisymmetric since ξaµξ

b
ν + ξbµξ

a
ν = 0.

Thus we can envisage spacetime being enlarged to encompass both ordinary coordinates and
Grassmann coordinates, and spaces of this type were constructed in e.g. [16], where it was
shown that a canonical quantization in which vanishing anticommutators were replaced by non-
vanishing ones led to the Dirac equation. As also noted in [16], because of the Pauli principle
finite degree of freedom Grassmann coordinates ξbµ (as opposed to infinite degree of freedom
Grassmann fields ψ(x)) could not be macroscopically occupied. Consequently, a Grassmann
torsion could only be microscopic, with only the sector of electromagnetism that is based on Aµ
ordinarily being observable in macroscopic systems.

Now we had found in Eq. (23) that at the classical level the Aµ and Sµ sectors were decoupled
from each other. However, according to the Dirac action given in Eq. (21) both sectors couple
to the fermions. Thus quantum mechanically one could have transitions between the two sectors
mediated by fermion loops with both vector and axial vector insertions (axial analog of light on
light scattering). This would be a small effect, and would also be microscopic, with a quantized
Grassmann torsion not making any substantial modifications to QED. Thus torsion, and equally
magnetic monopoles, might only be manifest microscopically, where they could potentially
contribute to physics beyond the standard model [17]. Finally, if the torsion/monopole sector
is only manifest microscopically, then macroscopically we can set E′, B′, ρm, and Jm to zero,
with the standard sourceless Faraday Law then holding for macroscopic electrodynamics.
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