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Abstract. Spontaneous emission from atoms with unstable nuclei is investigated. The decay 

law of an unstable nucleus is shown to be not exponential and to depend on a parameter 

characterizing the self-interaction of the unstable nucleus. This parameter, as well as the decay 

width, can be extracted from the line profile. It is demonstrated on the instance of Beryllium 

atom with the unstable neutron-rich 
13

Be nucleus that for light atoms this parameter may have 

an essential effect on their spontaneous emission spectrum. Spontaneous emission from 

supercritical atoms is investigated as well. Their spectrum is continuous and depends on the 

decay width of the supercritical nucleus. The most sensitivity to the magnitude of the decay 

width is observed in the X-ray band.  

1. Introduction 

Atomic spectra are known to be a rich source of information about the structure of atomic nuclei. The 

interaction between the nucleus and atomic electrons is purely electromagnetic, its character is well 

known, that is why nuclear parameters can be extracted from atomic spectra without involving any 

model concepts. In Ref. [1] it was shown that spectroscopic methods may appear very promising for 

the investigation of unstable nuclei. The instability of the atomic nucleus has an unavoidable effect on 

the process of spontaneous emission, and hence, the spectrum carries information about the decay 

parameters of the unstable nucleus. The method of spectroscopic analysis developed in [1] is based on 

the approach of generalized quantum dynamics (GQD) [2]. Its advantage is that it allows one to regard 

an unstable system as an energy distribution from the very beginning and does not appeal to the 

eigenvalues of any Hamiltonian. Using this approach, it was shown [1] that the spectrum of a 

supercritical atom is continuous and depends not only on the decay width and the mass excess of the 

superheavy nucleus, but on a parameter characterizing the self-interaction of the nucleus. The 

developed approach is universal and may be applied to any unstable nucleus. In the present paper we 

proceed with the investigating the spontaneous emission spectrum from supercritical atoms and search 

for the spectral band especially sensitive to the magnitude of the decay width of the supercritical 

nucleus. Besides, we show how the above approach can be applied to the exploration of light unstable 

nuclei. We regard the spontaneous emission from the light Beryllium atom with the neutron-rich 

nucleus 
13

Be and show that the parameter characterizing the nuclear self-interaction plays an essential 

role in this case.  
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2. The self-energy function of an unstable nucleus 
The natural broadening of spectral line profiles )(S  is defined by the probability of a photon being 

emitted with energy   as the atomic system goes from the excited state i  to a lower state f : 
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where  , k  and   are the energy, momentum and polarization of the photon respectively, 'A  is a 

normalization factor, )0,(tU  is the evolution operator in the representation picture connected with the 

evolution operator in the Schrödinger picture )0,(tUS  by the following expression: 
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 . The operator )0,(tU S  is just a Fourier transform of the Green operator: 

 

  )(exp
2

1
)0,( zGizdxtU S 


 



 . (2) 

In Ref. [2] it was shown that using the reduction procedure the Green operator can be redifined so that 

it describes the evolution of particles propagating freely or interacting only with vacuum. This is 

achieved by means of the insertion of the self-energy function )(zC  into the matrix elements of the 

free Green operator:   1

0 )(')(
~

'


 zCEzmmmzGm mm , where mE  is the energy of the 

system in the state m  and )(zCm  is the energy of the interaction with vacuum in this state. The 

condition 0)(  zCEz mm  determines the physical masses of particles. After such reduction the 

interaction in the system is described by the operator )(zM  which involves only the interaction of the 

particles with each other. The system of equations for the operators )(zC  and )(zM  was derived in 

[3] from the generalized dynamical equation (GDE), which in turn is a direct consequence of the first 

principles of quantum physics. Being equivalent to the Schrödinger equation in the case when the 

interaction in a quantum system is instantaneous, GDE allows one to extend quantum dynamics to the 

case of nonlocal-in-time interactions. This equation provides a new insight into many problems in 

nuclear physics [1,4], atomic physics [5-9] and quantum optics [10,11]. The approach to description of 

quantum dynamics constructed this way is more general and remains valid even in the case when no 

Hamiltonian can be constructed as an operator generating dynamics of the system. Moreover, it allows 

to take into account the instability of a state consistently and to regard it as an energy distribution from 

the very beginning, without appealing to the eigenvector system of any Hamiltonian.  

The Green operator of the atomic system with an unstable nucleus, which undergoes a spontaneous 

atomic transition with a photon emission, has the following structure: 
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where   1
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 iii EzCEzizGi  is the Green operator of the atomic system in the excited 

state i  with the energy iE ,   1
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   fff EzCEzkfzGkf  is the 

Green operator of the atomic system in a lower state f  with the energy fE  and a photon in the 

state ,k ,   1
)(

~ 
 DPDP EzDPzGDP  is the Green operator of the daughter particles of 

the nuclear decay with the total energy DPE . All the above operators are taken in the Furry picture and 

the Coulomb interaction between the central nucleus and atomic electrons is already accounted for. 
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The self energy function of the atom with an unstable nucleus is split up to the self-energy of its 

electrons )(zC
e

 and the self-energy of the nucleus )(zCN : )()()( zCzCzC
eN  . In general, it 

has a real and an imaginary part: 2/)()( ziEzC  , where )(Im2/)( zCz  . The real part 

determines the shift of an energy level, while the imaginary part describes the decay law of the system 

and in the case of exponential decay coincides with the decay width up to the factor 1/2. Further we 

will regard the energies of atomic levels with account of the Lamb shift and we will deal with the 

renormalized masses of the particles. Thus, the real part of the self-energy function is already taken 

into account and only the imaginary part remains: )(Im)( zCizC  . 

The decay law of the superheavy nucleus is defined by the behaviour of its self-energy function 

)(zCN  near the point NEz  , NE  being the energy of the supercritical nucleus: MEE DPN  , 

M  being the mass excess. The variation of the self-energy function is generally weak and we can 

restrict ourselves to the first term of its Taylor expansion: 

...)(/)()()( 
 NEzNNNN EzdzzdCECzC

N

. Obviously, 2Im ( )N NC E  is just the decay width 

0 . The parameter 
NEzN dzzdCT


 /)(1  was discussed in [1] and looks as follows: 1T R , where 

M



  is the ratio of the reduced mass of the nucleus   to its mass excess M . The factor R  

characterizes the self-interaction of the unstable nucleus. It should be emphasized that this parameter 

is model independent and provides a fundamental characteristic of the nuclear decay process. Along 

with the decay width it determines the energy distribution of the unstable state. The value of R  

determines a nonexponential correction to the decay law. From the solution of the generalized 

dynamical equation for the nuclear self-energy function [1] it was obtained that 1~R . With all this, 

we arrive at the following form of the nuclear self-energy function:  

 02Im ( )N DPC E R        . (4) 

As for the electronic self-function, its dependence on z  is not essential in comparison with the 

nuclear one, so it can be just equated to the decay width W  of the corresponding atomic level: 

( ) / 2
e

C z iW  .  

3. Spontaneous emission from supercritical atoms 

In the case of supercritical atoms )(zC
e

 is negligibly small and the total self-energy function is 

reduced to that of the nucleus: )(Im)( zCizC N . We will investigate the supercritical nucleus on 

the instance of the double-Uranium giant nuleus. The heavy Uranium nuclei undergo strong Coulomb 

repulsion and fly apart in a very short time. The daughter particles are two Uranium nuclei. The 

lifetime of the superheavy nucleus SH  plays the key role for the principal probability of the 

observation of vacuum decay [12] in heavy-ion collision experiments. It is estimated by nuclear 

physics to be of the order of 
2110~ 

SH  s [13] (the corresponding decay width is 
510~V  eV). At 

the same time, an assumption was made in [14] that a mechanism can exist which holds the nuclei 

together for a longer time 
1910~ 

SH  (the corresponding decay width is smaller: 
310~D  eV). The 

spectroscopic approach described above could help to determine the decay time more precisely.  

The spectral line profile for superheavy atoms was derived in [1] and is as follows: 
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The photon emission probability corresponding to V  ( D ) will be denoted as )(VS  ( )(DS ). 

Here the magnitude of R  is not essential in comparison with other parameters ( 0,M ) and its 

variation will not have a notable effect on the spectrum. Let us explore the influence of the decay 

width. The numerical values of the parameters in equation (5) are as follows: eVM 8109   [14], 
2102.1   for the double-Uranium system [1]. In the optical range ( 2.36.1~  eV) the photon 

energy in expression (5) can be neglected in comparison with M  and 0 :  
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The photon emission probability is then linearly dependent on the photon energy and the derivative is 

constant. The numerical value of the derivative differs for the two assumed values of the decay width. 

This difference manifests itself in the 10
th
 decimal index if 

5

0 10~V  eV and in the 14
th
 decimal 

index if 
3

0 10~D  eV. Measurements of such accuracy are possible owing to the modern optical 

technologies [15]. In the ultraviolet range the difference manifests itself in the 8
th
 decimal index.  

In the soft X-ray band ( 5000124~   eV) the term R   becomes comparable to D  and in the 

hard X-ray region ( 5000  eV) it reaches the value of V . The difference between the spectral line 

profiles manifests itself in the 6
th
 decimal index, the shape of the profile being different as well 

(figure 1). Thus, the X-ray region is most sensitive from the experimental point of view.  

By further increasing the photon energy overcomes the decay width and for gamma photons 

( 124000 ) the latter becomes negligible in formula (5). Thus, for high energy photons formula (5) 

looks as follows: 
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and becomes independent on the decay width. In this part of the spectrum the emission probability is 

primarily defined by M  and hence can be used for the experimental tests of this parameter. 

 

 
Figure 1. The emission probability for the X-ray band. 

 

 

4. Spectrum of the light nucleus 
13

Be 

Let us consider the electron transition 2/12/1 12 sp   in a hydrogen-like atom of Beryllium with the 

neutron-rich nucleus 
13

Be. The nucleus 
13

Be decays via neutron emission: 

nBeBe 1

0

12

4

13

4  , 
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with the half-life time 
91051.0 N  s (

7

0 1013.0   eV). The lifetime of the excited atomic 

state 2/12p  is 
131062.0 A  s (accordingly, 

51011.0 W  eV). And hence the atomic transition 

occurs before the nucleus decays. But the nuclear instability will influence the atomic spectrum.  

The distinction from the previous case is that the electron self-energy is not negligible now and 

should be taken into account as well, therefore, )(2/)( ziCiWzC N , where )(zCN  is defined by 

formula (4) as before. The full Green operator of the system is now 
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where  
1
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      is the Green operator of the atomic system in the 

excited state i  with the energy iE  and the decay width W , 

 
1

; , ( ) ; , ( )f f N ff k G z f k z E C z E    


       is the Green operator of the atomic 

system in a lower state f  with the energy fE  and a photon in the state ,k . The daughter 

particles are now a neutron n1

0  and a Beryllium atom with the nucleus Be12

4 . Their parameters are as 

follows: 
91087.0   eV, 33247823M  eV and hence 1.26 .  

Substituting this into (4) and then into (5) we obtain the following form of the spectral line profile:  
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where 2.30fi  eV is the atomic transition energy. Thanks to the fact, that all the intrinsic 

characteristics for the 
13

Be are well known, the only parameter which can be varied here is the factor 

R . The spectral line profiles obtained for different values of this factor are displayed in figure (2). 

 

 
Figure 2. The radiation spectrum of the 

13
Be atom for the photon energies 100~   eV 

depicted for different values of the factor R . 
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As it is obvious from the figure, the shape of the spectrum depends dramatically on the value of the 

factor R . This dependence is mostly expressed in the optical and ultraviolet parts of the spectrum, 

where the highest experimental accuracy is available. 

5. Summary  

The spectra of unstable atoms have been investigated in the framework of generalized quantum 

dynamics. For very heavy supercritical atoms the spectrum appears to be continuous and to depend 

mostly on the intrinsic parameters of the nucleus, such as its mass excess and decay width. The X-ray 

range has been shown to be most sensitive to the magnitude of the decay width of the superheavy 

nucleus and can be exploited for its experimental determination. The power of the developed approach 

was demonstrated for light unstable nuclei on the instance of the Beryllium atom with the unstable 

nucleus 
13

Be. It was shown that its spectrum is strongly influenced by the factor depending on the 

nuclear interaction model and hence the spectrum can be used for the test of theoretical nuclear 

interaction models. 
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