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Abstract. I will summarize our current understanding of the QCD phase diagram with special
emphasis on what we can expect to learn from heavy-ion collision experiments. With the
upcoming Beam Energy Scan Phase II at RHIC and the experimental facilities FAIR, GSI, and
NICA, Dubna, several challenges need to be met both experimentally and theoretically. I will
discuss in which aspects theoretical advances are necessary in order to be able to interpret the
experimental results.

1. Introduction
Heavy-ion collisions have proved to be an excellent experimental tool to study strongly
interacting matter under extreme conditions such as high temperatures and high densities for
a couple of decades. While the available beam energies increased steadily from one generation
of accelators to the next with the LHC soon to operate at

√
sNN = 5 TeV, a revived interest in

lower beam energies is seen. This is predominently due to the possibility of discovering a critical
point in the phase diagram of QCD.

In the chiral limit, where the up and down quarks are massless, the phase transition between
a quark-gluon plasma (QGP) and the hadronic phase at vanishing baryochemical potential
µB = 0 is of second order if the strange quark has mass ms = ∞ and turns into first-order at
some finite value of ms [1, 2]. It has nowadays been established by lattice QCD calculations that
the phase transition at µB = 0 and at the physical quark masses is an analytic crossover [3, 4].
Being the only available exact method to solving QCD in the nonperturbative regime, current
lattice QCD methods are only feasible at µB = 0. Experimentally this corresponds to LHC and
top-RHIC energies. Due to the stopping of the incoming baryon currents of the two colliding
nuclei, one can study strongly-interacting matter at finite baryonic densities in the laboratory
by decreasing the beam energy. This fascinating idea is the main motivation behind the beam
energy scan (BES) at RHIC. Phase I has been completed by runs in 2010 and 2011 with data
taken at at

√
s = 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV and in 2014 with an additional run

at
√
s = 14.5 GeV. Phase II with larger statistics and additional energies is planned for 2018/19.

This brief overview is organised as follows: in the next section I will turn to theoretical
studies that conjecture the existence of a critical point and an adjacent line of first-order phase
transition at finite µB. Sections 3 and 4 discuss the potentials to discover the critical point and
the first-order phase transition in heavy-ion collisions via possible signatures and point out the
necessity of dynamical modeling of the phase transition. In section 5 some challenges for the
upcoming BES phase II will be highlighted.
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2. Indications for the existence of a critical point
As there is not yet any exact method to solve QCD thermodynamics at finite baryochemical
potential, our current knowledge is limited to model studies or asymptotic behavior. While
lattice QCD gives very reliable results at µB = 0, a finite baryochemical potential makes
it impossible to perform Monte-Carlo importance sampling due to the complex fermionic
determinant, often called the “sign problem”.

Functional methods, including Dyson-Schwinger equations (DSE) [5, 6] and functional
renormalization group (FRG) [7, 8], do not suffer from the sign problem and can be applied
in the entire phase diagram and in the nonperturbative regime. In the DSE approach the
temperature-dependent quenched gluon propagator is usually taken as input from lattice QCD
calculations and the back reaction of the quark loops is systematically included. For the quark-
gluon vertex a general ansatz has to be made with parameters fixed to match the gluon input, the
quark condensate and to obtain the correct asymptotic behaviors in the infrared and ultraviolet.
Solving the gluon and quark DSE excellent agreement with lattice calculations for the order
parameters (chiral condensate and Polyakov-loop) in the crossover transition at µB = 0 is found.
At finite baryochemical potential a critical point and a first-order phase transition are found
[5, 6]. In the FRG the thermodynamic potential is solved momentum shell by momentum shell,
thus obtaining a solution for the QCD flow equation. This method achieves excellent agreement
with lattice calculations for vacuum QCD [9] and for pure glue at finite temperature [10] and
has widely been applied to low-energy effective models, see below. Full QCD calculations in the
(T, µB) plane are work in progress.

From both functional methods combined one can so far conclude that there is no critical point
for T/µB . 2. For larger values a more thorough treatment of baryonic degrees of freedom needs
to be included.

The phase diagram of low-energy effective models has extensively been studied in chiral
mesonic models with constituent quarks like the Quark-Meson (QM) or the Nambu-Jona-Lasino
(NJL) model, and show the expected structures of crossover, critical point and first-order phase
transition with increasing baryonic density. These models can further be extended to include
the temporal gauge field A0 in terms of the Polyakov-loop

` =
1

Nc
〈trcP〉β , ¯̀=

1

Nc
〈trcP†〉β , (1)

for QCD with Nc number of colors and with the operator P

P = P exp

(
igs

∫ β

0
dτA0

)
, (2)

where gs is the strong coupling and β = 1/T the inverse temperature. The Lagrangian of the
Polyakov-Quark-Meson (PQM) model [11] reads
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Here, the potential of the mesonic fields U (σ, ~π) is the classical Mexican hat potential and the
temperature-dependent effective potential for the Polyakov loop is a parametrization of quenched
QCD calculations from the lattice
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for which the parameters can for example be found in [11].
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The inclusion of the Polyakov-loop leads to the suppression of one- and two-quark states in
the thermodynamic potential of the PQM model, the so-called statistical confinement. This is
due to the change of the numerical value of the Polyakov-loop. It vanishes below the transition
temperature and has a finite value at larger temperatures. It is thus an order parameter of the
confinement/deconfinement transition. The exact position of the critical point in these models
depends among other aspects on the way fluctuations are treated, on the mean-field level or
beyond [11, 12].

The existence of a first-order phase transition is further backed by work on color
superconductivity at low T and very large µB, where a rich phase structure of color-flavor
locking and 2SC phases is expected [13, 14, 15], and on neutron stars [16, 17].

3. Potential to discover the critical point in heavy-ion collisions
A critical point is a very special point in the phase diagram of any system. Here, fluctuations
grow very large and the thermodynamic characteristics of the systems are governed by only some
macroscopic parameters, like e.g. the dimension. Microscopically, very different systems show a
common, universal, behavior at their respective critical point. One of the particular features is
the divergence of the correlation length of the order parameter, ξ →∞, which gives rise to the
divergence of the ensemble fluctuations themselves.

By coupling the order parameter, e.g. the sigma field σ for chiral symmetry, to measurable
particles like pions, ie. gπσππ, or protons, ie. gpp̄σp, the diverging fluctuations of the sigma
field should translate into event-by-event fluctuations of pion or proton multiplicities in heavy-
ion collisions [18, 19]. This was realized not without noting that in small systems the correlation
length can obviously not become infinitely large beyond the size of the system. In a heavy-ion
collision one can assume that due to spatial limits the correlation length can maximally grow
up to ξ = 6 − 10 fm. First fluctuations were measured at the NA49 experiment at the SPS. It
was specifically looked for nonmonotonic behavior of the fluctuation measure as a function of
the beam energy. Results based on second-order moments did, however, not show the expected
nonmonotonic behavior [20].

More important than finiteness in space is actually the finiteness in time. It is not only
the correlation length, which diverges at a critical point, but also the relaxation time. Even if
a system is in equilibrium above the critical point it is necessarily driven out of equilibrium
as it evolves through the critical point at any finite time. It was shown in [21] by using
a phenomenological evolution equation for the mass of the sigma field mσ = 1/ξ that the
correlation length only grows up to ξ = 1.5−2.5 fm. Experimentally, it thus turns out to be more
favorable to look at higher-order moments of the fluctuations since they diverge proportionally
to larger exponents of the correlation length [22].

At finite baryochemical potential the net-baryon density mixes with the sigma field. Due to
its diffusive dynamics it becomes the true critical mode in terms of long-time dynamics [23, 24].
Therefore one expects more generally that at the critical point a non-monotonic behavior in
the fluctuations of conserved charges such as net-baryon number and net-electric charge can be
seen [13, 2, 18, 19, 25]. The fluctuations can be quantified by the susceptibilities, which are
given by

χl =
∂l(P/T 4)

∂(µ/T )l

∣∣∣∣
T

(5)

where the derivative of the pressure P is taken with respect to the chemical potential
corresponding to the conserved charge of interest. These susceptibilities can naturally be related
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to the cumulants of measured multiplicity distributions of the net quantities via

χ1 =
1

V T 3
〈N〉c =

1

V T 3
〈N〉 , (6)

χ2 =
1

V T 3
〈(∆N)2〉c =

1

V T 3
〈(∆N)2〉 , (7)

χ3 =
1

V T 3
〈(∆N)3〉c =

1

V T 3
〈(∆N)3〉 , (8)

χ4 =
1

V T 3
〈(∆N)4〉c ≡

1

V T 3

(
〈(∆N)4〉 − 3〈(∆N)2〉2

)
, (9)

where the first three cumulants are simply given by the corresponding central moments. The
fourth cumulant is a combination of fourth and second central moments. The fluctuations are
the event-wise deviation from the event-by-event mean: ∆N = N − 〈N〉.

In the above equations for χl experimentally unknown quantities like the temperature and
the volume of the system appear. It turns out that suitable ratios of the susceptibilities
can be expressed in terms of the mean M = 〈N〉, the variance σ2 = 〈(∆N)2〉, the skewness
S = 〈(∆N)3〉/〈(∆N)2〉3/2 and the kurtosis κ = 〈(∆N)4〉/〈(∆N)2〉2 − 3, by

χ2

χ1
=
σ2

M
,

χ3

χ2
= Sσ,

χ4

χ2
= κσ2 . (10)

The unknown volume and temperature and the simple dependence on the particle multiplicity
according to the central limit theorm of statistics cancel in these ratios.

In the years 2010 and 2011, the beam energy scan phase I was run successfully at the RHIC
facility. Data taken at

√
s = 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV has been analysed and

the first results of higher-order cumulants of the net-proton distribution [26] and net-charge [27]
were reported.

In order to make a better connection between experimental data and the theoretical
expectation for critical phenomena it will become increasingly important to develop dynamical
models of the phase transition. One approach that can effectly treat fluctuations at the critical
point dynamically is nonequilibrium chiral fluid dynamics (NχFD) [28, 29, 30, 31, 32, 33] where
fluctuations of the sigma field and the Polyakov-loop are propagated explicitly via a coupling
to a fluid dynamical expansion of heavy-ion collisions. After the discussion of some aspects of
the first order phase transition in the next section I will highlight some challenges for dynamical
models in section 5.

4. ... and the first order phase transition
An indirect discovery of the critical point could go via a disappearance of signals of a first-
order phase transition toward higher

√
s. The first-order phase transition is characterized by a

coexistence region where the two phases have the same pressure. Above and below the transition
temperature, meta-stable states exist, in which the system can be trapped when nonequilibrium
effects become important. For example the fast collective expansion of matter produced in a
heavy-ion collision can lead to supercooling [34, 35, 36, 30]. If the nucleation rates are low
enough, this phase will decay via spinodal instabilities [37, 38, 39]. It was shown in recent works
that this effect can lead to domain formation in the net-baryon density [40, 41, 32]. In [40, 41]
a nonequilibium equation of state constructed by joining a QGP equation of state via a spline
with a hadron gas equation of state was applied in a fluid dynamical simulation of heavy-ion
collisions. This is different from the usual equations of state with a first-order phase transition,
as they are taken in the equilibrium mode, which corresponds to a Maxwell construction over
the coexistence and spinodal region. It was seen that initial inhomogeneities, present in the
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fluctuating initial conditions from UrQMD, get amplified in the spinodal region. In NχFD
fluctuations are generated dynamically which means that even for smooth initial conditions
spinodal instabilities may arise during the evolution through the phase transition, as was shown
in [32].

If fluctuations are to be seen from a critical point scenario or a first-order phase transition
is a question if the system is sufficiently in or out of equilibrium. One can perform a similar
analysis of susceptibilities in Eq. (5) in the spinodal region instead of restricting oneselves to
the thermodynamically stable states. In [42] it was found that the quark number susceptibility
diverges along the isothermal spinodal lines due to the convex structure of the pressure in the
presence of mechanically instable regions.

5. Challenges for the Beam Energy Scan Phase II
The following points are some important challenges for experiment and theory for current and
future investigation of the QCD phase diagram.

• Net-baryon versus net-proton fluctuations: If net-baryon number is the driving force behind
the critical fluctuations then the critical signals in the experimentally measured fluctuations
in net-proton number are significantly obscured due to isospin randomization. Assuming
that the number of (anti-)protons and neutrons among a certain number of (anti)baryons
are distributed according to a binomial distribution, the net-baryon number fluctuations
can be reconstructed from the measured (anti-)proton distributions via formulas in [43, 44].
The isospin randomization can also be included in benchmark calculations starting from a
hadron resonance gas model [45].

• Efficiency corrections: Additional fluctuations can come from the experimental setup
itself. Limited reconstruction efficiency will affect all higher-order moments of measured
distributions [46]. It turns out that if the momentum coverage is extended the efficiency
corrections need to be treated momentum dependent [47] and they will also affect the
experimental errors [48].

• Global charge conservation: In heavy-ion collisions the net-baryon number, net-electric
charge and net-strangeness are conserved not on average but exactly in each collision. Due
to the limited experimental acceptance fluctuations are observed. It remains a challenging
question if the system can at all be described in a grandcanonical ensemble or if a canoncial
ensemble is more suitable. Experimental cuts can strongly affect the fluctuations [49, 50].
In transport model studies, that account for the microcanonical character of the individual
scatterings, it was shown that net-proton fluctuations (in contrast to net-baryon number)
are affected only at lower

√
s [49]. Observing only a small fraction of all net-baryon in

each event leads also to a strong bias toward observing a Poisson distribution although the
underlying distribution might be very different from Poisson [50].

• Initial state and final state: In theoretical modeling of the fluctuations at the phase
transition it cannot be forgotten that there are other sources of fluctuations coming from
the initial and the final state. Especially the initial state at high baryonic densities is only
very poorly understood so far. Since we are interested in fluctuations in net-baryon number,
the initial fluctuations due to baryon stopping at lower beam energies need to be treated
more carefully.

• Equation of state and transport coefficients: It is an open question if the QCD phase
transition at high baryonic densities is predominantly a liquid-gas or a hadron-quark phase
transition, for which the (pseudo-)critical pressure either increases or decreases as a function
of the temperature [51, 52]. This will have significant phenomenological consequences. In
addition to the equation of state, any realistic simulation at finite baryochemical potential
requires transport coefficients as an input.
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• Phase transition and freeze-out conditions: It needs to be emphasized that an interplay
of the location of freeze-out conditions [53] and variations in

√
s can generate various

nonmonotonic fluctuation patterns, which need to be investigated thoroughly. In order
to distinguish between fluctuations at the crossover [54], critical point and first-order phase
transition a combined analysis of all higher-order cumulants needs to be performed.
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