ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012031 doi:10.1088/1742-6596/608/1/012031

Recent Developments in the
CernVM-File System Server Backend

R Meusel, J Blomer, P Buncic, G Ganis, S Heikkila

CERN PH-SFT
CERN, CH-1211 Geneva 23, Switzerland

E-mail: rene.meusel@cern.ch

Abstract. The CernVM File System (CernVM-FS) is a snapshotting read-only file system
designed to deliver software to grid worker nodes over HTTP in a fast, scalable and reliable
way. In recent years it became the de-facto standard method to distribute HEP experiment
software in the WLCG and starts to be adopted by other grid computing communities outside
HEP. This paper focusses on the recent developments of the CernVM-FS Server, the central
publishing point of new file system snapshots. Using a union file system, the CernVM-FS Server
allows for direct manipulation of a (normally read-only) CernVM-FS volume with copy-on-write
semantics. Eventually the collected changeset is transformed into a new CernVM-F'S snapshot,
constituting a transactional feedback loop. The generated repository data is pushed into a
content addressable storage requiring only a RESTful interface and gets distributed through a
hierarchy of caches to individual grid worker nodes. Additonally we describe recent features,
such as file chunking, repository garbage collection and file system history that enable CernV M-
FS for a wider range of use cases.

1. Introduction

The CernVM File System (CernVM-FS) is a read-only file system [1] designed for accessing large
centrally installed software repositories based on HTTP. The repository content is distributed
through multiple layers of replication servers and caches to individual grid worker nodes where
CernVM-F'S repositories are usually mounted as a FUSE [2] file system. Both meta-data and file
contents are downloaded on first access and cached locally. Nowadays CernVM-F'S is a mission-
critical tool for the distribution of HEP software [3, 4] in the World-wide LHC Computing
Grid [5] and recently gains adoption in other fields [6]. The four LHC experiments sum up to
some 110 million file system objects and 4 TB of file contents, which doubled in the last two
years (Figure 1 shows the growth of the ATLAS software repository as an example).

Prior to distributing, the centrally installed software repository content is prepared by the
CernVM-F'S server tools. Each file is compressed and stored in a content-addressable storage
based on a cryptographic hash of the file content. This allows for trivial consistency checks
and yields de-duplication on file content level. Relevant file system meta information (i.e. path
hierarchy, access flags, file names, ...) is stored in hierarchical file catalogs which are eventually
put into the content-addressable storage along with the actual data.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012031 doi:10.1088/1742-6596/608/1/012031

2. Usage Statistics and New Use Cases

In the last two years the amount of LHC experiment software accessible through CernVM-F'S has
more than doubled with a steady growth rate. In August 2014 CernVM-FS repositories under
the domain cern.ch! were providing on-demand access to more than 7 TB of software and
conditions data stored in about 125 million file system objects (i.e. files, directories, symlinks).
All repositories hosted at CERN have been successfully migrated to the CernVM-FS 2.1.x
repository scheme as of the 15th of September 2014 which is a crucial precondition to benefit
from any of the discussed features in this work.

Beyond that, there are many more CernVM-FS repositories hosted by other institutions
including but not exclusively DESY, NIKHEF and Fermilab. CernVM-FS’s popularity inspired
some new use cases and hence new challenges in the future development of the system. In this
section we present statistics figures and a summary for future challenges due to these new use
case scenarios.

2.1. Statistics for LHC Experiment Software Repositories

The four LHC experiment software repositories are accounting for more than 4 TB of files and
nearly 110 million file system objects. We have seen a steady growth for those repositories (see
Figure 1) while the average file size increased only slightly. However, in Section 2.2 we take a
look at other CernVM-F'S repositories that exceed the average file size of the LHC experiment’s
repositories by several orders of magnitude (cf. Tables 1 and 2).

ATLAS Software Repository (mid 2012 to mid 2014)

8
5/3 T T T T T T T é
g =
5 40M| 12 g
g 17
z &
2 2
S 20M| 11 =
—
2 === Data Volume (Terabyte) B
E — File System Entries g
Z 0 M q)\ q)\ %\ %\ %\ q)\ :b\ ﬂa‘ ‘b\ 03‘ :b‘ 0.)\ {b‘ :b\ ﬂa‘ ‘b\ 03‘ :b‘ %\ b;‘ b;‘ by‘ b,‘ b&‘ %\ %\ O E
7 QA QA A QAR A A QY QY Y QY QY QY QY RLY
NNV B NN NN NV 2

Figure 1. Growth of the ATLAS software repository (atlas.cern.ch) in the last 24 months.
Showing a doubling in both file system entries (red) and available data volume (blue).

1 . .
alice-ocdb.cern.ch, alice.cern.ch, ams.cern.ch, atlas-condb.cern.ch, atlas.cern.ch, belle.cern.ch, boss.cern.ch,
cernvm-prod.cern.ch, cms.cern.ch, geant4.cern.ch, grid.cern.ch, lhcb.cern.ch, na61l.cern.ch, sft.cern.ch

ACAT2014 IOP Publishing

Journal of Physics: Conference Series 608 (2015) 012031 doi:10.1088/1742-6596/608/1/012031
Repository # File Objects # Data Objects Volume Avg File Size
atlas.cern.ch 48’000°000 3’700°000 2.2 TB 68 kB
cms.cern.ch 37°000°000 4’800°000 0.9 TB 33 kB
lhcb.cern.ch 15’800°000 4’600°000 0.5 TB 43 kB
alice.cern.ch 7°000°000 240’000 0.5 TB 94 kB
sum/average: 107°800°000 13’340°000 4.1 TB 60 kB

2.2.

Table 1. File system statistics of conventional LHC experiment software repositories.
Effective: August 2014

New Use Cases of CernVM File System Impose New Challenges

CernVM-FS’s scalability depends on the efficiency of its aggressive cache hierarchy. Therefore we
assume that repository updates are infrequent (i.e. hours to weeks), individual distributed files
are small (< 500 kiB) and the accessed working set of geographically collocated worker nodes is
similar. These assumptions hold true for pure software repositories, hence the widespread and
successful utilisation of CernVM-FS. Nevertheless, emerging use cases are relaxing some of these
assumptions:

(i)

Some LHC experiments began to distribute conditions databases? through CernVM-FS [3].
These files are accessed in very similar patterns as the experiment software itself, but the
average file size is orders of magnitude larger (cf. Tables 1 and 2). CernVM-FS has to treat
large files differently to avoid cache cluttering and performance degradation.

Repository # File Objects # Data Objects Volume & File Size
ams.cern.ch 3’700°000 1°900°000 2.0 TB 0.7 MB
alice-ocdb.cern.ch 700’000 700’000 0.1 TB 0.2 MB
atlas-condb.cern.ch 8’400 7’800 0.5 TB 60.7 MB
sum/average: 44007000 2’600’000 2.6 TB 20.5 MB

Table 2. File system statistics of repositories containing experiment conditions data.
Note: ams.cern.ch does contain software also
Effective: August 2014

CernVM-F'S persistently stores all historic snapshots of a repository, making it a good fit
for long term analysis software preservation [7]. However, it lacks a means to easily manage
and access these preserved snapshots.

It is planned to use CernVM-FS to distribute nightly integration build results to simplify
development and testing of experiment software. While such repositories naturally
experience large and frequent updates (i.e. LHCb would publish about 1’000°000 files
summing up to 50 GB per day), the particular build results need to stay available only
for a short period of time. Hence, the long term persistency mentioned before quickly fills
up the repository’s backend storage with outdated revisions and requires garbage collection.

With an increasing number of institutions hosting and replicating CernVM-FS repositories
the ecosystem is evolving from a centralised and controlled software distribution service into
a more mesh-like structure with many stakeholders. In this new environment configuration
and distribution of public keys becomes increasingly challenging for individual clients.

2 Repositories: atlas-condb.cern.ch and alice-ocdb.cern.ch

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012031 doi:10.1088/1742-6596/608/1/012031

3. New and Upcoming Features in the CernVM-FS Server

The features presented here do not represent an exhaustive list but are a selection of changes
relevant to the challenges we present in Section 2.2. Note that some of the features are already
available in the current stable release (i.e. CernVM-FS 2.1.19) while others are scheduled for a
release in the next 3 to 6 months.

3.1. File Chunking for Large Files

CernVM-FS and its caching infrastructure were designed to serve many small files as efficiently
as possible. Assuming that small files (f.e. binary executables or scripts) will be read entirely,
CernVM-F'S always downloads complete files on open() and stores them in a local cache. Larger
files (> ~ 50MiB) are much more likely to contain data resources (f.e. SQLite databases) that
are usually read sparsely. Such access patterns in large files would unnecessarily clutter the
cache and waste bandwidth.

Newer CernVM-FS Servers? therefore divide large files into smaller chunks, allowing for better
cache exploitation and partial downloads. We use the XOR32 rolling checksum [8] for content
aware cut mark detection to exploit de-duplication between similar large files in our content-
addressable storage format. Hence, the chunk size is not static but varies in a configurable range
(default: 4 MiB < size < 16 MiB).

This new feature is particularly interesting for repositories hosting large files like conditions
databases. It is completely transparent for both the repository maintainer and the users of

CernVM-F'S and enabled by default.

3.2. Named CernVM File System Snapshots and Rollbacks

Keeping track of historic snapshots in a CernVM-FS repository was cumbersome as they were
identified only by a SHA-1 hash comparable to a commit hash in Git. With named file system
snapshots? we now provide a means to catalogue these snapshots along with an arbitrary name
and a description. The benefit of this history index is two-fold: facilitated mounting of ancient
repository revisions on the client side and on the other hand the possibility to rollback revisions
on the server side.

Nevertheless, we do not intend to transform CernVM-F'S into a fully featured version control
system. Named snapshots are meant to simplify the handling of old file system snapshots
only. A server side rollback therefore invalidates all named snapshots that succeed the snapshot
targeted by the rollback. The server side rollback is meant as an undo-feature. Thus we prevent
the occurrence of diverging branches in a CernVM-FS repository.

3.3. Garbage Collection on Revision Level
CernVM-FS is following an insert-only policy regarding its backend storage. Data is only
added and references to it are updated, while preceding snapshots are never removed from the
repository’s backend storage. This yields a system where historic state remains reconstructible
at the expense of an ever growing backend storage. In Section 3.2 we described how this can be
utilised for long term preservation of software environments.

However, in use cases like the publishing of nightly integration build results this exhaustive
history is not required or would even become prohibitively large in a short period of time.

In an experimental nightly build repository set up by LHCb, about one million new files per
nightly build release summing up to some 50 GB were published. Due to de-duplication the
backend storage (600 GB volume) was able to store the repository for about one month before

3 Experimental file chunking as of version 2.1.7 (stable since 2.1.19)
4 Named Snapshots are available since CernVM-FS 2.1.15

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012031 doi:10.1088/1742-6596/608/1/012031

running full. Figure 2 plots the number of contained files (red) compared to referenced data
objects (blue) and the stored data objects (brown) over the repository revisions.

Note that removing files from the CernVM-FS repository (see revisions 28 to 34 in Figure 2)
leads to a decrease in the number of referenced data objects while the number of stored objects
remains the same. The additionally stored data objects are referenced by historic snapshots but
not in the latest revision of the repository. Since this use case does not require preservation of
historic revisions, the yellow area describes the amount of garbage accumulated in the backend
storage.

Experimental LHCb Nightly Repository

T T T T ‘ ‘ ‘ ‘
— Files in CVMFS
4Mp | Stored Objects
- == Referenced Objects

12M |-

10 M |-

Removing Files

6 M |-

Number of Objects
oo
=
T

- =N /e -

oMt N e e
M |

| : 50 55

Repository Revisions

Figure 2. Statistics of an experimental LHCb nightly build repository comparing referenced
files (red), referenced data objects (blue) and stored data objects (brown). Area in yellow depicts
potential garbage in the repository’s backend storage.

We are currently working on a garbage collector® for CernVM-FS on revision level that is
striving to solve this problem. It will remove historic snapshots from a CernVM-FS repository
including all data objects that are not referenced by any conserved snapshots. Due to the
architecture of CernVM-FS’s internal data structures (i.e. the file system catalogs) as a Merkle
Tree [9] and a hash based content-addressable storage for all data objects; a simple mark-and-
sweep garbage collector can efficiently detect such garbage objects. We already demonstrated
the feasibility by a proof-of-concept implementation of such a garbage collector on the LHCb
nightly repository.

3.4. Configuration Repository for Bootstrapping CernVM-FS Clients
With a quickly growing number of CernVM-FS repositories hosted and replicated by various
institutions the configuration of clients on both worker nodes and interactive machines becomes

5 Planned for a release with CernVM-FS 2.1.20

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012031 doi:10.1088/1742-6596/608/1/012031

increasingly complex. Therefore we are adding support for a special configuration repository®
that is envisioned to contain both default settings and public keys for various scenarios and
production repositories. This is meant to simplify the distribution of (default) configuration for
many repositories through a central entry point.

Site administrators would point their CernVM-FS clients to this configuration repository
instead of setting up repository and replication URLs and public keys manually. Hence,
mounting a repository becomes a two-stage process: First the configuration repository is
mounted to retrieve the default settings for the actual production repository which is mounted
as a second step. As a result, the configuration of CernVM-FS will be drastically simplified.

Summary
In this work we outlined use cases for CernVM-FS that have been emerging while the system
became widely used along with the challenges they implied for the further development of
CernVM-FS. In Section 3 we introduced new features that address these new requirements.
The new server components of CernVM-FS 2.1.x cope with a wider range of use cases while
still keeping the focus on scalable software and conditions data distribution. In the next releases
we will simplify the configuration of CernVM-FS clients as well as introduce a garbage collection
feature allowing repository maintainers to prune unneeded historic repository snapshots.

References

[1] Jakob Blomer, Predrag Buncic, and Thomas Fuhrmann. Cernvm-fs: Delivering scientific software to globally
distributed computing resources. In Proceedings of the First International Workshop on Network-aware
Data Management, NDM ’11, pages 49-56, New York, NY, USA, 2011. ACM.

[2] FUSE: Filesystem in Userspace.

[3] Jakob Blomer, Carlos Aguado-Snchez, Predrag Buncic, and Artem Harutyunyan. Distributing lhc application
software and conditions databases using the cernvm file system. Journal of Physics: Conference Series,
331(4):042003, 2011.

[4] J Blomer, P Buncic, I Charalampidis, A Harutyunyan, D Larsen, , and R Meusel. Status and future
perspectives of cernvm-fs. Journal of Physics: Conference Series, 396(5):052013, 2012.

[5] LHC Computing Grid Technical Design Report.

[6] C Condurache and I Collier. Cernvm-fs beyond lhc computing. Journal of Physics: Conference Series,
513(3):032020, 2014.

[7] Dag Toppe Larsen, Jakob Blomer, Predrag Buncic, Ioannis Charalampidis, and Artem Haratyunyan. Long-
term preservation of analysis software environment. Journal of Physics: Conference Series, 396(3):032064,
2012.

[8] Kendy Kutzner. The decentralized file system Igor-FS as an application for overlay-networks. PhD thesis,
Karlsruhe Institute of Technology, 2008.

[9] Ralph C. Merkle. A digital signature based on a conventional encryption function. In A Conference on
the Theory and Applications of Cryptographic Techniques on Advances in Cryptology, CRYPTO '87, pages
369-378, London, UK, UK, 1988. Springer-Verlag.

6 $CVMFS_CONFIG_REPOSITORY is planned for CernVM-FS 2.1.20

