
Native Language Integrated Queries with CppLINQ

in C++

V Vassilev

CERN, PH-SFT, Geneva, Switzerland

E-mail: vvasilev@cern.ch

Abstract. Programming language evolution brought to us the domain-specific languages
(DSL). They proved to be very useful for expressing specific concepts, turning into a vital
ingredient even for general-purpose frameworks. Supporting declarative DSLs (such as SQL) in
imperative languages (such as C++) can happen in the manner of language integrated query
(LINQ).

We investigate approaches to integrate LINQ programming language, native to C++. We
review its usability in the context of high energy physics. We present examples using CppLINQ
for a few types data analysis workflows done by the end-users doing data analysis. We discuss
evidences how this DSL technology can simplify massively parallel grid system such as PROOF.

1. Introduction
Informally, imperative programming languages (such as C++) describe the necessary steps to
get desired results, i.e the ’how’ to perform the computations. On the other hand declarative
programming languages (such as SQL) describe the desired result, i.e the ’what’ the result should
look like. Over the years, interoperability between both worlds has become vitally important
to almost every general-purpose programming language. The interoperability in imperative
languages is usually implemented through disabled type safety at compile time. Inter-process
communication was done via compiler and library support mainly employing the type variants
[1] [2] or type erasure. Another well-known approach to integrate domain-specific declarative
programming language support is using strings, passed to bridging layers. For example, SQL is
embeddable in a C++ application through string literals. They are passed to a driver, querying
the database behind, producing results and finally wrapping them into C++ objects.

Comprehension syntax is very close to the syntax of a number of practical database query
languages. A language of comprehensions can naturally and uniformly express operations
on various collection types [3]. C# [4] introduced an incarnation of the comprehensions
with its Language Integrated Queries (LINQ). LINQ’s key concept is to provide a type-safe
comprehension (SQL-like) syntax, operating on collections. The C# language provided rich
language constructs, allowing LINQ implementation on top of the existing features. Moreover,
LINQ introduced the new programming paradigm integrated into the type system of the
underlying imperative language.

The newer C++ language specification standards introduced the necessary concepts to build
type-safe, platform-independent comprehension syntax in C++. Since then a few open-source

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012030 doi:10.1088/1742-6596/608/1/012030

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



implementations of LINQ for C++ emerged. All of them are in early development stages, but
definitely worth reviewing their power and usability in the C++ context. In particular we shall:

• describe the advantages of the computational abstraction;

• show the expressiveness of the comprehension syntax via concrete code snippets.

This paper is divided into sections as follows: Section 2, CppLINQ Overview, discusses in
brief some of the advantages of the computation abstraction and how it can come naturally by
introducing the comprehension syntax in C++. Section 3, Usability & Applications, shows the
capabilities of CppLINQ and its possible usage scenarios in the field of the high-energy physics.
Section 4, contains Conclusion & Future work.

2. CppLINQ Overview
The declarative programming paradigm helps to abstract out details such as computation control
flow and tends to reduce side effects [5]. The paradigm puts less emphasis on the ’control’ part of
Kowalski’s equation algorithm = logic + control [6]. Thus it leaves a lot of room for interpretation
on how the logic semantics could be realized. The same logic can be expressed in many different
ways, depending on the standpoints or the implicit requirements. Thus the system can delegate
pinning down the control to a specialized layer, which performs further planning, optimizations
and scheduling.

Going declarative can be too harsh for various reasons: some concepts are difficult to express;
different algorithms exist only in an imperative language or are more efficient in an imperative
language; the difficulty of educating developers; etc. These drawbacks lead to a hybrid approach
– mixing a declarative language in an imperative one. The hybrid approach gives the flexibility
to the developers of choosing the computational abstraction only where it makes most sense.

C# LINQ provides a declarative way to easily extract and process data from arrays, iterable
classes, XML documents and relational databases. After its success in the .NET world it was
ported to many unmanaged environments such as JavaScript and C++. CppLINQ is a common
name of LINQ technology, implemented in C++. The implementation techniques vary, as a
result there are a few CppLINQ dialects. Depending on the dialect, the same program logic
could be expressed in different ways. Listing 1 introduces a typical CppLINQ program. The
snippet illustrates invariant statements for every CppLINQ program. Writing code in CppLINQ
is straightforward: include the CppLINQ-specific headers (line 1); add a using CppLINQ clause
(line 7); use the ’from’ statement (line 8) to enter the CppLINQ world.

1 #include "linq.h" // Include the necessary header files.

2 // Returns true if the parameter is a prime number.

3 bool is_prime(int x);

4

5 long sum_primes() {

6 auto xs = int_range(0, 100); // same as boost::counting_iterator.

7 using namespace cpplinq; // Add the using CppLINQ clauses.

8 return from(xs) // Switches to the CppLinq world.

9 .where(is_prime)

10 .sum();

11 }

Listing 1: A typical LINQ-style program in C++

2.1. Implementation Approaches
Listing 1 demonstrate how to sum all prime numbers in the range of (0, 100) using CppLINQ.
Some implementations rely on the ’operator.’ and others on other operators, which are allowed to

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012030 doi:10.1088/1742-6596/608/1/012030

2



be overloaded. Usual criticism of the ’operator.’ approach is that ’operator.’ is not overloadable
in C++. This makes user extensions very hard to implement. Alternatively, LINQ provides
other hooks to handle third-party extensions. Another common implementation approach is
using an ’overloadable’ operator such as ’operator<<’ or ’operator>>’, at the cost of code
readability.

One of the most mature and tested implementation of CppLINQ is by Microsoft Reactive
Components research group [7]. It uses only standardized C++, making the library platform-
independent. All references to CppLINQ in the paper relate to this particular implementation.
Without limiting the generality of CppLINQ we will show a few examples in the context of
high-energy physics.

3. Usability & Applications
The ROOT Framework [8] has become a standard for the field of high-energy physics. The tool
is widely adopted for data analysis. A huge number of physicists are using ROOT on daily basis
to perform data analysis on large scale data sets. A usual data analysis program starts with
selection of the interesting pieces of data (interesting physics events). Physicists (data analysts)
generally have a theory and expectations. They usually think in terms ’what’ and not ’how’, i.e
they think about the logic and not the control of the Kowalski equation. For example, in order
to check a theory or an expectation, one needs to ’select’ all events, ’where’ their properties
match some criteria and ’order’ them or ’group’ them by certain properties. Translation of the
process is straightforward to be done in terms of a comprehension syntax. Currently, the ROOT
framework can be used only by an imperative manner (recommended is C++, but Python, Ruby
and .NET bindings are available).

Lets consider a naive (and common) data layout, presented on Listing 2. A physics event
data consists of a number of physics events, each one consists of number of particles.

//...

enum ParticleType { Photon = 0, Electron, Kaon, Pion };

struct Particle {

ROOT::Math::XYZVector fPosition; // vertex position

ROOT::Math::PtEtaPhiMVector fVector; // particle vector

int fCharge; // particle charge

ParticleType fType; // particle type

};

struct EventData {

std::vector<Particle> fParticles; // particles of the event

};

std::vector<EventData> Events;

Listing 2: Physics event data sample

Our example data model is serialized on disk in the form of a ROOT tree in a ROOT file.
Reading the data from disk in ROOT5 is tedious and cumbersome for various reasons. A major
obstacle is ROOT5’s non-conforming C++ interpreter and its lack of template support. This
results in an awkward, non-type-safe implementation of data access. Moreover, iteration over
the data entries with iterators is not possible.

Since the new C++ interpreter cling [9] came into service in ROOT6, ROOT can interact
with very complex C++ constructs (for example, none of STL/Boost has to be hidden anymore,
meaning ROOT can be exposed to heavily templated code). This allows implementing a
strongly-typed ROOT file reader (aka TreeReader). The type safety comes through the

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012030 doi:10.1088/1742-6596/608/1/012030

3



TTreeReaderValue (Listing3 line 4), where the user specifies the expected types and ROOT6
can report if there was a type mismatch.

1 void ReadEventData(std::vector<std::vector<Particle>>& v) {

2 std::unique_ptr<TFile> myFile = std::make_unique<TFile>(TFile::Open("eventdata_s99.root"));

3 TTreeReader tree("tree", myFile);

4 TTreeReaderValue<std::vector<Particle>> particles_value(tree, "fParticles"); //

5 while (tree.Next()) {

6 v.push_back(*particles_value); // particles_value is dereferenced as a ’normal’ iterator.

7 }

8 }

Listing 3: Reading event data using TTreeReader class in ROOT6

The nested data structures can be flattened by using the TTreeReaderArray (line 4 on Listing
4) concept, which iterates type-safely over iterable containers.

1 void ReadEventDataFlat(std::vector<Particle>& v) {

2 std::unique_ptr<TFile> myFile = std::make_unique<TFile>(TFile::Open("eventdata_s99.root"));

3 TTreeReader tree("tree", myFile);

4 TTreeReaderArray<Particle> particles(tree, "fParticles"); //

5 while (tree.Next()) {

6 for (auto& p: particles)

7 v.push_back(p);

8 }

9 }

Listing 4: Reading event data elements using TTreeReaderValue class in ROOT6

ROOT6’s TTreeReader helps the user express iterations over ROOT trees by implementing
the std::iterator pattern. The inclusion of the TTreeReader in ROOT6 allows CppLINQ to
operate on data coming directly from ROOT files in the form of tuples or trees. We will show
three examples of event selection using the comprehension syntax. The new data reader is
flexible and it is effortless to integrate it in new environments such as CppLINQ. All examples
can run as ROOT6 macros or at the ROOT6 prompt [10].

Listing 5 shows how to open a ROOT file and prepares the TreeReader. Then using CppLINQ
the number of events is calculated (line 7). Line 9 computes the count of all particles in all events
in our data. Line 11 displays the particle count in the first 10 events.

1 root [0] #include "EventData.h"

2 root [1] TFile* f = TFile::Open("eventdata_s99.root");

3 root [2] TTreeReader t("tree", f);

4 root [3] TTreeReaderArray<Particle> particles(t, "fParticles");

5 root [4] #include "linq.hpp"

6 root [5] using namespace cpplinq;

7 root [6] from(t).count() //

8 (typename std::iterator_traits<iterator>::difference_type) 200

9 root [8] from(t).select([&](Long64_t){ return from(particles).count();}).sum() //

10 (size_t) 9729

11 root [9] from(t).take(10).select([&](Long64_t){ return from(particles).count();}).sum() //

12 (size_t) 492

Listing 5: CppLINQ at ROOT6’s prompt

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012030 doi:10.1088/1742-6596/608/1/012030

4



All code snippets use ’standard’ LINQ operators [11]. Most of the operators take a closure as
a parameter in the form of C++11 lambda function. The lambda functions are used to express
the concrete rules to be held for every event selection.

Listing 6 shows how to select all events from a given ROOT tree, which have at least four
particles with more than 15 GeV energy.

void Example1(const TTreeReader& tree, float Emin = 15.0) {

TTreeReaderArray<Particle> particles(tree, "fParticles");

typedef decltype(from(particles)) ParticleItr_t;

auto goodParticles

= from(tree)

.select([&](Long64_t) { return from(particles); })

.where([&](const ParticleItr_t &plist) {

return plist.where([&](const Particle &p) { return p.fVector.E() > Emin; }).count() >= 4;});

//...

Listing 6: Selection of events having at least 4 particles with energy more than N GeV

Listing 7 demonstrates mixing imperative concepts into CppLINQ. Alternatively, in the
particular case one could use the default if empty operator. If there are cases where one needs
to rely on the host programming language, it is possible to switch back to imperative mode.

void Example2(const TTreeReader& tree) {

TTreeReaderArray<Particle> particles(tree, "fParticles");

auto result = from(from(tree)

.where([&particles](Long64_t) {

bool hasAtLeast2 = from(particles)

.where([](const Particle& p) { return p.fType == Pion; })

.count() > 2;

auto electrons = from(from(particles)

.where([](const Particle& p) { return p.fType == Electron; }))

.select([](const Particle& p){ return p.fVector.Pt(); });

if (hasAtLeast2 && !electrons.empty())

return electrons.max();

return 0.;

}))

.where([](double pt){ return pt != 0; }).count();

//...

Listing 7: Select all events having at least 2 pions and show the momentum of the leading
electron

void Example3(const TTreeReaderArray<Particle>& particles) {

auto PosPtSum = from(tree).select([&](Long64_t) {

return from(particles)

.where([](const Particle& p) { return p.fCharge > 0; })

.select([](const Particle& p) { return p.fVector.Pt(); });

.sum();

});

}

auto h = new TH1F("ptSum", "Sum p_T of events; p_T [GeV]", 200, 0, 500);

from(PosPtSum).all([&h](double pt){h->Fill(pt); return true;});

//...

Listing 8: Calculate the event momentum distribution for all positively charged particles

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012030 doi:10.1088/1742-6596/608/1/012030

5



Listing 8 shows how CppLINQ works with the TTreeReaderArray by flattening the event
data structure and iterating over all particles from in events in order to sum the momenta of
the individual particles. More examples and demos can be found online [10].

4. Conclusion & Future work
CppLINQ is a platform-independent, open-source library, which uses well-standardized features
of C++. It provides concepts to abstract out details of the algorithms. Combined with ROOT6.
they can be helpful in the analysis of physics events. The library relies on iterator design pattern
[12]. It works smoothly with STL and Boost.

Another complementary and fundamental concept of the technology is the delayed, on request,
computation. They introduce parallelism through expression trees and will be a subject of a
future paper. The technology is already adopted in cloud systems. They prove that the delayed
computation and computational abstraction can be beneficial in many cases. Introducing the
delayed computation concept from CppLINQ could enhance the current communication model
between users and batch systems or between ROOT and PROOF, for example.

Abstracting out the control of the program opens a lot of opportunities. For example, it would
be much easier to translate a data flow visual programming language for physics data analysis
into C++. The data flow visual language constructs could be compiled into their CppLINQ
representations, and vice-verse – CppLINQ programs could be visualized by a data flow visual
representation, making them more understandable.

Certainly, the domain is rather new and opens a broad research and development horizon.
While CppLINQ needs some more work to become more robust, mixing comprehensions with
C++ is beneficial in many cases in the field of high-energy physics. It provides the necessary
computational abstraction layer, which can be a mediator between programmers and tools.
Such tools could perform powerful analyses, transformations, optimizations and parallelizations
dynamically and interactively.

References
[1] MSDN VARIANT structure URL http://msdn.microsoft.com/en-us/library/windows/desktop/

ms221627%28v=vs.85%29.aspx

[2] Cantu M 2008 Essential Pascal (CreateSpace Independent Publishing Platform) chap 10
[3] Buneman P, Libkin L, Suciu D, Tannen V and Wong L 1994 Comprehension syntax SIGMOD Rec. 23 87–96

ISSN 0163-5808 URL http://doi.acm.org/10.1145/181550.181564

[4] Hejlsberg A, Wiltamuth S and Golde P 2003 C# Language Specification (Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc.) ISBN 0321154916

[5] Lloyd J W 1994 Practical advantages of declarative programming Joint Conference on Declarative
Programming, GULP-PRODE vol 94 p 94

[6] Kowalski R 1979 Algorithm = logic + control Communications of the ACM 22 424–436 ISSN 0001-0782
URL http://doi.acm.org/10.1145/359131.359136

[7] Microsoft reactive components team reactive extensions URL http://msdn.microsoft.com/en-us/data/

gg577609.aspx

[8] Brun R and Rademakers F 1997 ROOT – an object oriented data analysis framework Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 389 81–86 ISSN 0168-9002 new Computing Techniques in Physics Research V URL http:

//www.sciencedirect.com/science/article/pii/S016890029700048X

[9] Vasilev V, Canal P, Naumann A and Russo P 2012 Cling – the new interactive interpreter for ROOT 6 Journal
of Physics: Conference Series 396 052071 URL http://stacks.iop.org/1742-6596/396/i=5/a=052071

[10] Vassilev V ROOT 6 examples with cpplinq URL https://github.com/vgvassilev/RxCpp/tree/master/Ix/

CPP/samples

[11] MSDN The .NET standard query operators URL http://msdn.microsoft.com/en-us/library/bb394939.

aspx

[12] Gamma E, Helm R, Johnson R and Vlissides J 1995 Design Patterns: Elements of Reusable Object-oriented
Software (Boston, MA, USA: Addison-Wesley Longman Publishing Co. Inc.) ISBN 0-201-63361-2

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012030 doi:10.1088/1742-6596/608/1/012030

6


