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Abstract. Based in the numerical experiment techniques, we study the propagation dynamics
of electromagnetic waves along one-dimensional array of parallel cylindrical subwavelength
waveguides, possessing Kerr nonlinearity. By means of the proper selection of the array
parameters, as well as the incident radiation properties and applying the Finite Difference Time
Domain method, we are able to observe the light self-trapping in one single subwavelength
waveguide. Furthermore, the position of the output beam can be controlled by the phase
difference and the angle of incidence of the input beams. These results could give the possibility
to control light by light, with perspectives in applications to implement integrated optics devices
at nanoscale.

1. Introduction

Nonlinear optical effects in discrete systems are subjects of both, theoretical and experimental
research along several decades. The discretized nature of light propagation gives rise to many
phenomena which are not possible in homogeneous bulk media, such as discrete diffraction,
diffraction management, temporal and spatial discrete soliton [1-5]. There are many researches
focusing in the way to find the dimension properties of a waveguide [6-8], to obtain smaller
nonlinear discrete systems and strong confinement of light in waveguides with dimensions smaller
than the wavelength of incident light and to propagate in low dimensional periodic structures [9].
Even so, the discrete properties of light in subwavelength arrays are not complete clear, especially
in pure dielectric arrays, so, we develop here a numerical study of light propagation and
interaction in an one-dimensional array of nonlinear parallel dielectric subwavelength waveguides
(SWWGs).

The purpose of our study is to find the physical parameters that allow the self-trapping of
light in an array of SWWGs. Among these, we focus our attention in the separation between
of the SWWGs and the diameter of the waveguide, the Kerr coefficient value, from one side,
and the incident radiation properties, from the other. Once known these parameters, also, we
search the possibility to control the position of the output self-trapped beam by changing the
angle incidence and phase of the incident beams.
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2. Mathematical model

2.1. Nonlinear optics background

Electromagnetic waves consist of time-varying electric and magnetic fields, which are generated
one another and giving a resultant wave propagating through the space, vacuum or some
material. The electromagnetic radiation is a means of transporting energy that can carry
information.

The electromagnetic phenomena are governed by a set of four fundamental coupled partial
differential equations known as Maxwell’s equations [10,12], and the constitutive relations
equations, which relate the electric field intensity E to the electric flux density D, and similarly
the magnetic field intensity B to the magnetic flux density H, which are listed below:

D=c¢cE+P (1)

B=uH-M (2)

Where ¢ is the electric permittivity, u is the magnetic permeability, P is the polarization
vector in a dielectric and M is the magnetization vector in a magnetic medium. The permittivity
€ and the permeability u, are macroscopic parameters that describe the relationships among
macroscopic field quantities, but they are based on the microscopic behavior of the atoms and
molecules in response to the fields. These parameters are constants for linear, homogeneous,
time-invariant, and isotropic material media. Otherwise, for nonlinear media these parameters
may depend on the magnitudes of E and B, on spatial coordinates (z,y, z) in inhomogeneous
media, on time, on frequency, or on the orientations of E and B in anisotropic media. P and
M vectors account for the presence of matter and express the contributions of the medium to
some changes that may suffer an electromagnetic field.

We consider nonlinear media with optical Kerr response, which is a phenomenon where the
refractive index of the medium changes by the strong electric field [13]. In the Kerr nonlinear
model, the nonlinear contribution to the electric polarization field P will depend on the electric
field E in the following way:

P =& (x7 [EP)E, (3)
where ¢( is the permittivity in the free space and X(g) is the nonlinear electrical susceptibility
of the medium. Solving for the displacement field D, equation (1) gives:

D = &(e + XY [EP)E, (4)

with lineal relative dielectric constant e,. In the limit where x(®) \E\Q << g, and we know that
n? & e,, we can express the refractive index as:

1y® |E]?
n= (g +x¥|E)2=n, (1—1—5% = ng + nal, (5)

where ng and no denote linear and nonlinear refractive index, respectively, I is the beam intensity
(power per unit area). We have assumed the plane wave relationship between beam intensity

and electric field as:
€0 2
I =ny,/— |E 6
o[22 IB ()

So, the nonlinear refractive index is expressed as:
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Considering a source-free medium, non magnetic (M = 0) and isotropic nonlinear media, we
can reduce the Maxwell’s equations to following two equations:

oH 1

= _-VxE
oD
- _ H
5 V x (9)

Considering the constitutive relation (4), the equations (8-9) are the differential equations
that represent the six electromagnetic field components that need to be solved in low
dimensionality problems.

2.2. Methodology

The field propagation can be found out by substituting (4) in (9) and solving simultaneously the
equations (8-9), with proper boundary conditions applying the Finite Difference Time Domain
(FDTD) method [10,11,14-16]. The FDTD method is used because we are interested in the
interactions of electromagnetic waves with complex structures that cannot be easily described
analytically.

The FDTD method belongs in the general class of grid-based differential time domain
numerical modeling methods. The time-dependent Maxwell’s equations (in partial differential
form) are discretized using central-difference approximations for the space and time partial
derivatives, this approach is the discretization scheme proposed by Yee [16], which can be
visualized using a cubic unit cell, where the electric and magnetic fields are defined at specific
points in the cell at alternative time steps. The resulting finite difference equations are solved
by first solving the electric field vector components in a volume of space at a given instant
in time, and then solving the magnetic field vector components in the same spatial volume
at the next instant in time. This process is repeated until the desired transient or steady-
state electromagnetic field behavior is fully evolved. The electric and magnetic fields are thus
determined at every point in space over the physical region in which the simulation is performed.

For a more accurate representation of the device, we can use the smallest mesh size but
at a substantial cost of more simulation time. Then, the mesh size should be such that
electromagnetic fields do not change substantially from one point to the next in the mesh. This
means that to have significant results the size of the grid will be a fraction of the wavelength,
for that, we use the follow relation:

1
At < Cmaz(1/(Az)2 + 1/(Ay)2 + 1/(Az)2)1/2 (10)
where At is time step size, ¢pqq 1S the speed light in the medium and Az, Ay and Az are the
spatial mesh size.
The relation showed in the (10) is known as Courant’s condition [17], which is both necessary
and sufficient for numerical stability in an FDTD code that considers linear effects and nonlinear
Kerr materials.

3. Simulations and results
To simulate the propagation of the optical field through an array of SWWGs, a 3D rectangular
region is used, with dimension of 30 x 4 x 40 wm on x, y and z direction, respectively. The cell
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size is between 15 and 40 nm, time step size is t = 0.07086 f s, fulfilling the Courant’s condition.
We use boundary conditions of 40 perfectly matched layers (PML) in the simulation region.

We consider a one-dimensional SWWGs array in the direction of the x axis, the direction of
propagation in the z axis, formed with different number m of SWWG, however, for m = 23 we
observe that the light propagation maintains the identical properties observed for larger arrays
m > 50, all the SWWGs are modeled with SiOy with linear refractive index ng = 1.455 and
Kerr nonlinear coefficient x® = 2.0 x 10718 m?V 2, each has circular cross section of radius
r = 300nm and the separation among waveguides is d = 250nm coupled to its neighbor by
means of evanescent field.

Output
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Input optical signals

Figure 1. Diagram of the array and incident beams.

The incident radiation are two linearly polarized monochromatic beams in the x axis with
Gaussian profile, constant peak amplitude of 4.5 x 103V /m and wavelength A\ = 800nm, focusing
on three SWWGs at z = 0, each one, Ej; and E;o are shown in the figure 1.

With the physical parameters above described we are able to achieve self-trapped light in a
central SWWG. For steering the output beam position, we introduce difference phase (A¢) and
incident angle (0) of the input beams. To get a deep insight into the dynamics of such a process,
we study three different cases.

3.1. Normal incidence
We consider that Ej; and Ejo are normally incident over cross section of the array with A¢ = 0.
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Figure 2. Normal incidence of E;; and Ejz.(a) Input and output beam profile and (b) energy
distribution: input(i) propagation (ii) and output (iii).
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In the figure 2(a), we show the input beam profile (line with circles) and the output beam
profile (continuous line) with peak amplitude of 2.8 x 103V /m, and it is trapped in the central
waveguide. In 2(b), show the energy distribution; (i) input beams, (ii) the propagation of Ej;
and Ej3 beams for interact in the middle of the array and produce one resulting beam in the
central SWWG, (iii) output beam, where we can see that all SWWGs have energy, but the more
intense is in the central.

3.2. Separately influence of phase difference and angle of incidence

Now, we considered normal incident waves with A¢ = 7/2, in figure 3(a), we have the input
and output beam profile (line with circles and continuous line, respectively), when incident wave
Ei; has phase 0 and Ej has phase 7/2, we can see that the output beam is in a waveguide
shifted to right of the central, with amplitude of 2.35 x 103V /m. The direction of the output
displacement depends on what of the input fields experiences the phase change.
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Figure 3. (a) Input and output beam profile under the influence of phase difference A¢ = 7/2,
(b) Input and output beam profile, influence of incident angle (6 = 20°). Red line— input beam
profile (line with circles). Blue line- output beam profile (continuos line)

However, a similar result is obtained, if we consider the wave Ej; has an incident angle
6 = 20° and Ej2 is normal incident both with with phase 0. In the figure 3(b) we have the input
and output beam profile. We can see the output beam is in a single waveguide to right of the
central one with amplitude of 2.25 x 103V /m. This amplitude is smaller than the showed in
3(a), so, with the modify of phase or incidence angle in the input electromagnetic field, we can
change the amplitud and the output beam position.

3.8. Simultaneously influence of both phase and incident angle
Now, we introduce phase in one input beam and incident angle in the other.

We obtain a similar result like shown in figure 3, where the output beam is shifted to right
the central SWWG. In this case, we have the wave Ej; with incident angle § = 10° and phase
0, Ej2 is normal incidence with phase /2. In figure 4 show the energy distribution; (a) input
beams, (b) output beam, (c) input and output beam profile. With this parameters we have the
output beam with peak amplitude of 2.87 x 103V/m and is to right the central SWWG, we can
see a better self-trapped of the light in this SWWG.

This self-trapping effect is presented because the evolution of the field is affected by the
self-focusing that the Kerr media presents when an intense field is launched. This phenomenon
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Figure 4. (a) Input and (b) output energy distribution, (c) input and output beam profile with
simultaneously influence of incident angle and phase: § = 10° and A¢ = 7/2. In (c), red line-
input beam profile (line with circles). Blue line- output beam profile (continuos line).

produces a change of phase shift in the wavefront, due to the change in the refractive index of
the SWWGs.

4. Conclusions

We have studied the dynamics behavior of the discrete self-trapping beam as a result of the
interaction between two input optical fields in a subwavelength waveguide arrays with Kerr
nonlinearities. We have shown the dependence of the output position in function of the phase
difference and the angle of incidence. We observed the change the position of the output beam,
these results could give the possibility to control light by light with perspectives in applications
to integrated optics at nanoscale.
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